config.cfg Usage

In the config.cfg you can set different parameters for the game, such as resolution or fullscreen.
For testing without Enemies you can set numEnemies=0. For testing with a invincible player you
can set godMode=1. All parameters are described in the config file, so hopefully it is clear what

they are for.

Gameplay

Controls: W,A,S,D to move ,spacebar to jump, mouse to aim and right mouse button to shoot

The Player controls a block that moves around in a giant block and has to shoot the red colored
blocks, before they shoot him. The player and the enemies both die with one shot, so if the
player gets hit he explodes and the game is over. If he reaches a certain amount of enemy Kills
(default=30) he wins the game and gets celebrated with fireworks. After winning the game, you
can look up your needed time in the console

We assured that our game is playable by implementing a collision detection, to force the player
to move inside our world and make the shooting mechanic of our game work. We have real 3D
gameplay, because the 3D world allows movement that wouldn’t be possible in 2D. Sometimes
he has to jump on something to be able to shoot at the enemies. The 3D also changes the way u
can use cover, since enemies could shoot from a higher position.

Effects

Spotlights
References:
http://www.ngreen.org/?p=527

We implemented the part, that was important for the spotlight-effect, since the rest was already
implemented for the point light from submission 1. The shader needed the direction and the
range of the light, to know how far and which direction the spotlight should shine.

The spotlight is positioned in front of the player and has the same direction as the player is
looking.

Shadow Maps with PCF

References:

http://ogldev.atspace.co.uk/www/tutorial23/tutorial23.html
http://ogldev.atspace.co.uk/www/tutorial24/tutorial24.html
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/
http://http.developer.nvidia.com/GPUGems/gpugems_ch11.html (for PCF)



http://www.google.com/url?q=http%3A%2F%2Fwww.ngreen.org%2F%3Fp%3D527&sa=D&sntz=1&usg=AFQjCNE2UHUzwc_uUj2uFl7j6LMgZbM9aA
http://www.google.com/url?q=http%3A%2F%2Fogldev.atspace.co.uk%2Fwww%2Ftutorial23%2Ftutorial23.html&sa=D&sntz=1&usg=AFQjCNFz4mwom_lfOOHIPt9XjW_X7V-ofA
http://www.google.com/url?q=http%3A%2F%2Fogldev.atspace.co.uk%2Fwww%2Ftutorial24%2Ftutorial24.html&sa=D&sntz=1&usg=AFQjCNEP5pJg0OqWiRcBA-IQCBcBjZpYXQ
http://www.google.com/url?q=http%3A%2F%2Fwww.opengl-tutorial.org%2Fintermediate-tutorials%2Ftutorial-16-shadow-mapping%2F&sa=D&sntz=1&usg=AFQjCNE2R4KlYL3FWv_GBFhAEZhH46ZSow
http://www.google.com/url?q=http%3A%2F%2Fhttp.developer.nvidia.com%2FGPUGems%2Fgpugems_ch11.html&sa=D&sntz=1&usg=AFQjCNHKnh1Q-qsLtYy8bXGSiS11qyH-Ow

We created a depth texture, which is rendered from the position of the light in its direction.
Because we are using a spotlight we used a perspective projection matrix. The content of this
texture can be shown by setting showShadowMap=0 in the config file. The contents of this
texture are then used to check if vertices shown by the camera are in the shadow or not.

We implemented our own PCF algorithm based on the description of the reference for PCF. The
shadows are then rendered for the spotlight.

You can see the shadow well, when you direct the spotlight at the teapot. We use the backfaces
for the shadow, which is the reason for the shadow looking like it is. We did this, becaus when
we use the frontfaces instead we get alot of artifacts.

Cel Shading

References:
https://en.wikipedia.org/wiki/Cel_shading
http://prideout.net/blog/?p=22

In the fragment shader, 8 “buckets” are defined for the [0, 1] range. A function “celShade” is
defined, which takes a float of that range as input and returns the base value of the bucket in
which the input value belongs.

The diffuse and specular coefficients get passed through this function, resulting in clear-cut
transitions between darker and brighter areas.

In addition, the transition between the inner and outer cone of the spotlight is cel shaded as well,
to keep the cel shading look consistent.

+ Contours (backfaces)
References:
https://en.wikipedia.org/wiki/Cel shading

The back faces of all instances (including particles) are drawn slightly bigger wire frame mode
with black ink.

In the vertex shader, every vertex gets displaced by 0.005 points along its vertex normal to make
the object slightly bigger.

By drawing only the back faces only the contour remains after the z test.

Due to drawing the wire frame, the contour remains its thickness throughout the scene.


https://www.google.com/url?q=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCel_shading&sa=D&sntz=1&usg=AFQjCNHVYWAbqqREe4dkDmHlJmWzfD7Urw
http://www.google.com/url?q=http%3A%2F%2Fprideout.net%2Fblog%2F%3Fp%3D22&sa=D&sntz=1&usg=AFQjCNF8eb2BaiKdvfCxg4tOBVb0nrrC8w
https://www.google.com/url?q=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCel_shading&sa=D&sntz=1&usg=AFQjCNHVYWAbqqREe4dkDmHlJmWzfD7Urw

CPU-Particle System (+Instancing)

References:
http://ogldev.atspace.co.uk/www/tutorial33/tutorial33.html

A Particle struct captures values like position, direction and traveled distance. In each update
cycle the particles are updated, yielding a new model (transform) matrix. If a particle traveled a
certain distance at this point it will be discarded.

In the draw method the model (transform) matrices of each particle are written into a VBO.

The “model” matrix of the instancing shaders has been changed from a uniform input to a
regular one. Thanks to “glVertexAttribDivisor” and “glDrawElementsinstanced” all particles are
drawn within a single call.

Projected Textures

References:

https://en.wikipedia.org/wiki/Projective texture _mapping
http://www.ozone3d.net/tutorials/qglsl_texturing_p08.php
https://developer.nvidia.com/content/projective-texture-mapping

A texture gets projected from the player into the world based on the mouse position to assist with
aiming.

A (perspective-) projection and view matrix are created from the player in the “aim” direction.
These matrices get multiplied with the model matrix of each instance that gets drawn. The
resulting vertices are in a [-1, 1]*3 range, while the texture coordinates are in a [0, 1] range. To
account for this discrepancy, the texture-projection MVP matrix gets multiplied with a bias matrix,
so that the resulting coordinates in will be in a [0, 1] range.

In the vertex shader the vertices get multiplied with the texture-projection MVP matrix.

In the fragment shader the texture gets sampled with the xy coordinates of the resulting vec4. To
account for the perspective projection, the coordinates are divided by their homogenous
component first.

Finally, the color of the fragment gets multiplied by the sampled color (if available).

Animated Objects

n/a

View-Frustum-Culling

n/a


http://www.google.com/url?q=http%3A%2F%2Fogldev.atspace.co.uk%2Fwww%2Ftutorial33%2Ftutorial33.html&sa=D&sntz=1&usg=AFQjCNFYH0V3LOruAuS6QAbnGQTGT4BRGA
https://www.google.com/url?q=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FProjective_texture_mapping&sa=D&sntz=1&usg=AFQjCNG93WTStNmA1aFF1aJaa9PEYjefFg
http://www.google.com/url?q=http%3A%2F%2Fwww.ozone3d.net%2Ftutorials%2Fglsl_texturing_p08.php&sa=D&sntz=1&usg=AFQjCNFO-zH9_x4xAIVFEPWHPaeac6MLLw
https://www.google.com/url?q=https%3A%2F%2Fdeveloper.nvidia.com%2Fcontent%2Fprojective-texture-mapping&sa=D&sntz=1&usg=AFQjCNGPKob_7iVunJKqJ0ngdSmZpnXqMQ

Transparency

References: http://www.opengl.org/archives/resources/fag/technical/transparency.htm

Particles are drawn with an alpha value of 0.5 to distinguish them from bullets and enemies.

Experimenting with OpenGL

VAOs / VBOs are used extensively throughout the project.
A FBO is used to draw the depth values from the point of view of the light source into a texture.

llluminated/Textured Objects

We use a movable spotlight, that shows in the direction the player is facing. Because our light
source is movable everything except the player, who is behind the light, can be lit. The world, the
enemies, the bullets and the teapot all use the same texture with different colors. We did this to
give our game the simplistic look we wanted. Use the complexTexture=1 option to use a
different texture.

Tools for Model Creation

Blender

Additional Libraries

Assimp - http://assimp.sourceforge.net/
Bullet - http://bulletphysics.org/



http://www.google.com/url?q=http%3A%2F%2Fwww.opengl.org%2Farchives%2Fresources%2Ffaq%2Ftechnical%2Ftransparency.htm&sa=D&sntz=1&usg=AFQjCNHfWVY-1tFX3d4C2Rb0kvEAuWKDhw
http://www.google.com/url?q=http%3A%2F%2Fassimp.sourceforge.net%2F&sa=D&sntz=1&usg=AFQjCNEJ5iKgTTjJPeoV8XJCjXHjmxF95Q
http://www.google.com/url?q=http%3A%2F%2Fbulletphysics.org%2F&sa=D&sntz=1&usg=AFQjCNH1expMG9_SkYFquIiuHrpR48bw2Q

