Obstacles

Submission 2

Philipp Kafka (1027074), Thomas Lang (1025705)
June 25, 2013

1 Features

e skybox

e rotatable and zoomable camera (mouse controlled)
e controllable player character (keyboard controlled)
e physics

e objects to interact with (obstacles)

e textures

e illumination

e basic level file format and loader

e animations

e bloom

e motion blur

e soft, dynamic shadows

2 Controls

The camera can be rotated by moving the pointer while holding down the left mouse
button. Camera zoom is controlled through the mouse wheel. The player can be moved
using the A and D or the arrow keys. To jump, press space.



2.1 Debug Controls

e F1 — Help

e F2 — FPS Counter on/off (visible in window title bar)

e ['3 — Wire Frame on/off

e [} — Textur-Sampling-Quality: Nearest Neighbor/Bilinear
e ['5 — Mip Mapping-Quality: Off/Nearest Neighbor/Linear
e F6 — Bullet Physics Wireframes

e [7 — Stop Player Movement (Zero Velocity)

e F8 — Viewfrustum-Culling on/off

e ['9 — Transparency on/off

3 Command Line Parameters

e ——fullscreen to open game in fullscreen (default in release mode)
e ——windowed to open game in a window (default in debug mode)

e -w <width> for specifying a width

e -h <height> for specifying a height

e -v <value> for controlling vertical synchronisation

Width/height parameters have both to be set in order to take effect. In windowed mode
these refer to window dimensions. In fullscreen mode the nearest supported resolution
matching them is selected. Without both these parameters the desktop resolution is used
in fullscreen mode while in windowed mode the default window dimensions are.

4 |Instructions

The goal of this game is to reach the finish line of every level as quickly as possible.

In order to reach the second level one has to reach the finish line without falling into
the abyss. Space bar is key, some ramps are best to be avoided, be wary of those duckies.

If you fall down, you start at the beginning of the level. The time only stops at the



end of the game (when all levels are completed), so each fall costs precious time.

5 Implementation

The in-game world is represented by a scene graph containing all the objects that are
present in the scene. Every object inherits from the SceneObject type and can contain
other SceneObjects. The update and draw methods of a SceneObject are propagated to
all the child objects.

Additionally, we are using a lot of helper objects like the model loader, level loader,
shader manager and so on.

5.1 Player and Object physics

Collision detection and all movement in the game is controlled by the physics engine
(Bullet). The player is a dynamic physical object that is controlled by forces (for the
movement) and impulses (for jumping). The floor consists of several platforms that are
separated by gaps over which the player has to jump some way or the other.

Every object that gets drawn on the screen contains at least one Geometry object
which does the actual OpenGL work like filling buffers and making the draw calls. The
geometry data for that is loaded from model files using the Assimp model loader.

5.2 Animations

Every transformable scene object can have one or more animations applied to it. The
animations are just functions that are stored in a list inside the object and can simply be
added by use of lambda expressions. Model transformations also apply to their individual
meshes, therefore animations that transform models are hierarchical. An animation like
that can be seen when the player moves over a duck. When in the air, the player’s legs
still rotate on their own but are also affected by the spinning of the whole character.

5.3 Levels

Levels are stored using a custom level file format and can be found in the levels/ directory.
The format is documented in the level files themselves using comments. There is also a
file named “levels.txt” which stores the level succession. At the start of the game and
at the end of every level, the loadNextLevel method from the level loader gets called.



This method reads the next line from levels.txt, parses the corresponding level file
and constructs a Level object accordingly.

The level file format describes the size of the level, the setting (day or night), the
platform and gap sizes and all the obstacles including their positions (at the moment
only cubes are possible).

5.4 Models

All Models but the Ducky model were created using Blender, they are all stored in the
Wavefront object format.

5.5 Textures

We are also using “Ducky” from ECG with its textures. The obstacles have a custom
texture that we made. The floor uses a free-to-use texture, the link to the source can
be found in textures/ground.txt. For the Ul we use only self-made textures (e.g. the
help screen), even for the fonts (created using Luxi Mono font).

5.6 Illlumination and Shading

Currently there are two level settings that can be configured in the level files: day and
emphnight. All lighting is done using Phong shading.

In the day setting, a directional light source is used in addition to bright ambient
lighting. In the night setting, there is a point light hovering over and slightly behind
the player that illuminates the way. The light from it gets attenuated partly in a linear
and partly in a quadratic fashion. In the game engine, the spot light is just another
scene object that is transformed like every other object. Both day and night also include
Blinn-Phong specular reflections. The UI uses transparency.

5.7 Effects

e Thomas:

— Bloom
The Bloom implementation follows the slides from the CG UE Repetitorium
[1] and is only used in day levels. Threshold for the bright pass is pretty low
(0.3), which has the side effect that the color intensities also increase. For



filtering, a 7x7 gaussian kernel is used (horizontal and vertical pass). In the
blending pass, the resulting picture is calculated as original + 3 - filtered.

— Motion Blur

The Motion Blur effect was implemented using the GPU Gems 3 Tutorial from
Nvidia [2]. Tt is active in both day and night levels. The effect consists of two
parts: Camera Motion Blur and Object Motion Blur. Camera Motion Blur
only happens when the camera moves (but when the player moves, the camera
follows it automatically). It is calculated using the depth buffer (texture)
of the already drawn scene. For Object Motion Blur, fragment positions
are calculated for the current and for the previous frame. The differences
are stored as velocity values in a velocity texture that is then used in the
motionBlur fragment shader.

e Philipp:

— Variance Shadow Mapping

Basic first shadow mapping implementation (targeted to become shadow
mapping with PCF) done with the help of the official CGUE revision course
with its slides [3]. Then changed into VSM implemntation (quite some changes)
taking advice from [4] and [5]. In the depth pass where all geometries uses
special shader (and skybox isn’t drawn at all) the depth and the squared
mean of a distribution of depths (derivatives along x and y of the view from
the light source) are stored into an two-channel texture (therefore needing to
make use of the color and not the depth attachment of framebuffer) which is
blurred in another pass. In the render pass the fragment shaders then retrieve
the two values (moments) from shadow map from the corresponding position
and uses them using Chebyshev’s inequality for calculating a probabilty of
being shadowed which happens to be a good method for drawing a shadow
with (pseudo-)penumbra.

6 External Dependencies

o GLFW (window managing, OpenGL runtime)
Version: from repo after 2.7.8
URL: http://www.glfw.org/

o FlextGL (OpenGL extensions)
Version: dad6eb4fc3
URL: https://github.com/ginkgo/flextGL

e GLM (math)
Version: 0.9.4.4


http://www.glfw.org/
https://github.com/ginkgo/flextGL

URL: http://glm.g-truc.net/

o Assimp (model loading)
Version: from repo after 3.0
URL: http://assimp.sourceforge.net/

e Freelmage (image loading)
Version: from repo after 3.15.4
URL: http://freeimage.sourceforge.net/

e Bullet (physics)
Version: 2.81
URL: http://bulletphysics.org

e 2lib (for FreeImage and Assimp)
Version: 1.2.7
URL: http://zlib.net/

e getopt_long Windows port (command line options parsing)
Version: Oct 2012
URL: http://www.codeproject.com/Articles/157001/Full-getopt-Port-for-Unicode-anc

7 General Resources

e https://lva.cg.tuwien.ac.at/cgue/wiki/doku.php?id=students:introduction_
talks_code

e https://lva.cg.tuwien.ac.at/cgue/wiki/doku.php?id=students:debugcontext
e http://arcsynthesis.org/gltut/

e https://sites.google.com/site/drunkdevsltd/tutorials/draw-a-sphere-using-opengl-

References

[1] CGUE Repetitorium: Bloom, https://lva.cg.tuwien.ac.at/cgue/wiki/1lib/
exe/fetch.php?media=students:cguel3_bloom.pdf

2] GPU Gems 3, http://http.developer.nvidia.com/GPUGems3/gpugems3_ch27 .,
html

[3] CGUE Repetitorium: Shadow Mapping, https://lva.cg.tuwien.ac.at/cgue/
wiki/lib/exe/fetch.php?media=students:cguel3_shadowmapping.pdf


http://glm.g-truc.net/
http://assimp.sourceforge.net/
http://freeimage.sourceforge.net/
http://bulletphysics.org
http://zlib.net/
http://www.codeproject.com/Articles/157001/Full-getopt-Port-for-Unicode-and-Multibyte-Microso
https://lva.cg.tuwien.ac.at/cgue/wiki/doku.php?id=students:introduction_talks_code
https://lva.cg.tuwien.ac.at/cgue/wiki/doku.php?id=students:introduction_talks_code
https://lva.cg.tuwien.ac.at/cgue/wiki/doku.php?id=students:debugcontext
http://arcsynthesis.org/gltut/
https://sites.google.com/site/drunkdevsltd/tutorials/draw-a-sphere-using-opengl-3-3
https://lva.cg.tuwien.ac.at/cgue/wiki/lib/exe/fetch.php?media=students:cgue13_bloom.pdf
https://lva.cg.tuwien.ac.at/cgue/wiki/lib/exe/fetch.php?media=students:cgue13_bloom.pdf
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch27.html
http://http.developer.nvidia.com/GPUGems3/gpugems3_ch27.html
https://lva.cg.tuwien.ac.at/cgue/wiki/lib/exe/fetch.php?media=students:cgue13_shadowmapping.pdf
https://lva.cg.tuwien.ac.at/cgue/wiki/lib/exe/fetch.php?media=students:cgue13_shadowmapping.pdf

[4] Variance Shadow Maps, http://www.punkuser.net/vsm/

[5] Softshadow with GLUT, GLSL and VSM, http://fabiensanglard.net/
shadowmappingVSM/


http://www.punkuser.net/vsm/
http://fabiensanglard.net/shadowmappingVSM/
http://fabiensanglard.net/shadowmappingVSM/

	Features
	Controls
	Debug Controls

	Command Line Parameters
	Instructions
	Implementation
	Player and Object physics
	Animations
	Levels
	Models
	Textures
	Illumination and Shading
	Effects

	External Dependencies
	General Resources

