
For a freely movable Camera we implemented a Camera class that has
methods such as "calculateViewMatrix()" and "calculateProjectionMatrix()"
depending on the Cameras current position, orientation and game state. Right
now, it generally follows the movement of the player character with an offset
so that it always looks over the player characters shoulders. It is also possible
to drag the mouse on the screen on the X-Axis to make the camera orbit
around the player. It will then automatically sweep back into its original
position.

We have a class called GeometryObject which has vec3 attributes such as
position, orientation and scale. When an object moves, its according
properties are changed. During the rendering process we then calculate the
according transformation matrices and apply them.

We are modeling our characters in Blender and generate the UV Maps there.
In our Engine, we then read out the UV coordinates using Assimp and store
them together with the vertex positions.

Computer Defender 
Documentation for Assignment 1

Markus Scherer, Lukas Köll

Implementation

Freely movable Camera

Moving Objects

Texture Mapping



Every GeometryObject is associated to a Material. Our Engine uses a Material
base class which is associated with a Shader program and has methods
preDraw(), postDraw() and setUniforms(). These methods are called in the
GeometryObject in the draw() method. This design should assure that the
required uniforms for a certain shader are always set and still be flexible.

Control Action

WASD
Move the player forward/backward turn
left/right

TAB starts Debug mode

CTRL-TAB Disables Debug mode

Right-Click Shoot in look direction

Spacebar jump

Drag mouse
horizontally

Make Camera orbit around android

Multiple light sources
Shadow Mapping
Shooting
Orbiting Camera (automatically returns to original position)
Flexible Level Design
easily extendable due to Event System
Collision Detection
Jumping
Projectile Explosion

Simple Lighting and Materials

Controls

Features



We currently use 4 independant point light sources which illuminate all
objects. A Light object does basically inherit all properties from a SceneObject
and adds things like vec3 color. You can decide wether or not an object will be
textured or not by using the according Material. The Material name is read
from the imported model file. (StandardMaterial for example will render a white
Object with blinn/phong illumination but no texture while
LightedTextureMaterial will use a Texture and also use the lighting
information).

Illumination is done via Blinn model and shading via Phong right now.
Currently, all parameters such as ambient, diffuse and specular reflection
coefficient are static, but we plan to read them from the material properties in
the future.

We used the following external libraries:

Library Purpose URL

Assimp
Model and Material
Loading

http://assimp.sourceforge.net/

GLM
OpenGL compatible
vectors and matrices

http://glm.g-truc.net/

FreeImage Image loading http://freeimage.sourceforge.net/

GLFW Window Handling http://www.glfw.org/

GLEW
easier handling of
OpenGL

http://glew.sourceforge.net/

Lighting

Additional Libraries

http://assimp.sourceforge.net/
http://glm.g-truc.net/
http://freeimage.sourceforge.net/
http://www.glfw.org/
http://glew.sourceforge.net/

