OpenGL 3.x Part 2:
Textures and Objects

Ingo Radax,
Gunther Voglsam

Institute of Computer Graphics and Algorithms

Vienna University of Technology

Topics for today

® OpenGL 3.x Part 1 - Revisited
" Textures

" Framebuffer Objects

" Vertexbuffer Objects

" Vertex Array Objects

® Uniform Buffer Objects

" Notes on CG2

Institute of Computer Graphics and Algorithms 2

GrentL

Set up OpenGL-Project

Setup OpenGL Project

u Set up a MSVC-project as explained in the C+
+-lecture

" Version 1:
¢ Include OpenGL-header:

#include <GL/gl.h> // basic OpenGL
¢ Link OpenGL-library “opengl32.lib”
¢ Bind extensions manually

¢ Cumbersome!

Institute of Computer Graphics and Algorithms 4

Setup OpenGL Project

u Better: Version 2:
¢ Include GLEW-header:

#include <GL/glew.h> // GLEW
¢ Link OpenGL-library “opengl32.lib" and
“‘glew32.1ib”

¢ Copy “glew32.dllI” to bin folder
¢ U’r ready to go. ©

Institute of Computer Graphics and Algorithms 5

penGL

OpenGL-Object life-cycle
revisited

OpenGL-Object life-cycle

" In OpenGL, all objects, like buffers and
textures, are somehow treated the same way.

® On object creation and initialization:

¢ First, create a handle to the object (in OpenGL
often called a name). Do this ONCE for each
object.

¢ Then, bind the object to make it current.

¢ Pass data to OpenGL. As long as the data
does not change, you only have to do this
ONCE.

¢ Unbind the object if not used.

Institute of Computer Graphics and Algorithms

OpenGL-Object life-cycle

® On rendering, or whenever the object is used:
¢ Bind it to make it current.
¢ Use it.
¢ Unbind it.

® Finally, when object is not needed anymore:
¢ Delete object.

¢ Note that in some cases you manually have to
delete attached resources!

" NOTE: OpenGL-objects are NOT objects in
an OOP-sense!

Institute of Computer Graphics and Algorithms 8 #

GrentL

GLSL Shader
revisited

What shaders are

® Small C-like programs executed on the
graphics-hardware

® Replace fixed function pipeline with shaders
® Shader-Types

¢ Vertex Shader (VS): per vertex operations

¢ Geometry Shader (GS): per primitive
operations

¢ Fragment shader (FS): per fragment
operations

® Used e.g. for transformations and lighting

Institute of Computer Graphics and Algorithms 10 #

Shader-Execution model

“

OpenGL-API

OpenGL-Driver

Compiler

compiled code

Program-
Linker Object

executable code

Graphics-Hardware

Institute of Computer Graphics and Algorithms 1

Rendering-Pipeline

® OpenGL 3.x Rendering-Pipeline:

= t Vertex- Primitive
eometry Shader Assembly

’_1

Programmable!

o

Fragment-
Shader

Per
Fragment
Operations

Framebuffer

Rasterize Operations

Framebuffer

Hardware (GPU)

Institute of Computer Graphics and Algorithms 12

Rendering-Pipeline

® Remember:

¢ The Vertex-Shader is executed ONCE per
each vertex!

¢ The Fragment-Shader is executed ONCE per
rasterized fragment (~ a pixel)!

" A Shader-Program consists of both,
¢ One VS
¢ One FS

Institute of Computer Graphics and Algorithms 13

Example usage

® An application using shaders could basicially
look like this:

Load shader and initialize parameter-handles

Do some useful stuff like binding texture, activate
texture-units, calculate and update matrices, etc.

glUseProgram(programHandle);

Set shader-parameters
Draw geometry

glUseProgram(anotherProgramHandle);

Institute of Computer Graphics and Algorithms 14

GrentL

Textures

Why Texturing?

" |dea: enhance visual appearance of plain

Textures

" First things first:
¢ Load image-data from a file or
¢ Generate it (i.e. procedurally)
® Use Library to read data from files:
¢ GLFW: glfw.sourceforge.net
¢ Devil: openil.sourceforge.net
® Enable Texturing in OpenGL.:

// enable 2D-texturing
glEnable(GL TEXTURE 2D);

Institute of Computer Graphics and Algorithms 17

Textures

® As usual in OpenGL.:
¢ Create texture-handle

¢ Bind texture-handle to make it current
¢ Pass data to OpenGL (next slide)

GLuint textureHandle; // variable for our texture-handle

// get _one texture-handle
glGenTextures(1l, &textureHandle);

// bind texture
glBindTexture(GL TEXTURE 2D, textureHandle); // could also
be 1D, 3D, ...

Institute of Computer Graphics and Algorithms 18 ﬁ

Textures

® Use glTexImage*(...) to pass loaded image-
data stored in data to OpenGL

" If data is a null-pointer, the needed memory
on the GPU will be allocated

int mipLevel = 0; int border = 0;
int internalFormat = GL RGBA,

int width = 800; int height = 600;
int format = GL RGBA;

int type = GL_UNSIGNED BYTE;

// pass data for a 2D-texture
glTexImage2D(GL TEXTURE 2D, miplLevel, internalFormat, width,
height, border, format, type, data);

Institute of Computer Graphics and Algorithms 19 #

Textures

® As usual in OpenGL.:
¢ Atfter using it, don’t forget to unbind

¢ Finally, if not needed anymore, delete the
texture

// unbind texture
glBindTexture(GL_TEXTURE_2D, ©0);

// delete texture
glDeleteTextures(1l, &textureHandle);

Institute of Computer Graphics and Algorithms 20

Texture Aliasing / Mipmaps

® Problem: One pixel in image space covers many texels
B Solution: Mipmaps

Institute of Computer Graphics and Algorithms

Mip-Maps

m (Pre-)Calculate different Levels of detail:

¢ From original size (level 0)
down to size of 1x1 pixel

= After data has been
passed to OpenGL.:

¢ Use glGenerateMipmap(...)
to generate a set of mipmaps
for currently bound texture

// generate mipmaps for current bound 2D-texture
glGenerateMipmap(GL TEXTURE 2D);

Institute of Computer Graphics and Algorithms 22

Texture Parameters

= Magnification-Filter:
\ 4 Nee\st - VS. Linear

// set filter-mode for currently bound 2D-texture
glTexParameteri(GL_TEXTURE_ 2D, GL_TEXTURE_MAG_FILTER,
filter);

For filter-types see specification!

Institute of Computer Graphics and Algorithms 23

Texture Parameters

® Minification-Filter:
¢ Without Mipmaps:
="GL *
¢ With Mipmaps:
" GL * MIPMAP_*
¢ where * = NEAREST || LINEAR

¢ Recommended:
® Mipmaps with GL_LINEAR_MIPMAP_LINEAR

glTexParameteri(GL_TEXTURE_ 2D, GL_TEXTURE_MIN FILTER,
filter);

Institute of Computer Graphics and Algorithms 24 ﬁ

Texture Parameters

= Wrap and clamp:

¢ GL _CLAMP, GL_REPEAT,
GL CLAMP TO BORDER,
GL CLAMP TO EDGE,
GL MIRRORED REPEAT

repeat mlrror/repeat clamp

glTexParameteri(GL_TEXTURE_ 2D, GL_TEXTURE_WRAP_*,
filter); // * =S [[T[] R

Institute of Computer Graphics and Algorithms 25

Passing Textures to Shader

B Use different texture-units for different
textures

® Use uniform sampler* variables in shader to
access texture-units

// get location of sampler
GLuint texLocation = glGetUniformLocation(programHandle,
"colorTexture");

// activate the texture-unit to which the texture should be bound to
glActiveTexture(GL TEXTURE® + textureUnit);
glBindTexture(GL TEXTURE 2D, textureHandle);

// pass the texture unit (i.e., it's id) to the shader
glUniformli(texLocation, textureUnit);

Institute of Computer Graphics and Algorithms 26

Using texture in shader

// Textures can be accessed with samplers
uniform sampler2D colorTexture;

// to access textures, coordinates are needed
in vec2 texCoord;

void main(void)

{

// Access texture at specified coordinates
vecd4 texel = texture2D(colorTexture, texCoord);

Institute of Computer Graphics and Algorithms 27

Cleaning Up

" |f texture is not needed anymore, delete it

glDeleteTextures(1, &texId); // delete texture

® References

¢ OpenGL Registry,
http://www.opengl.org/registry/

¢ DGL Wiki, http://wiki.delphigl.com

Institute of Computer Graphics and Algorithms 28

GrentL

Framebuffer Objects
FBOs

What are FBOs used for?

® “Normal” rendering

// GL Program

glBindBuffer(GL_ARRAY BUFFER, vboHandle);
glVertexAttribPointer(vertexLocation, 4, GL FLOAT,
GL_FALSE, 0, 0);
glEnableVertexAttribArray(vertexLocation);
glBindBuffer(GL ELEMENT ARRAY BUFFER, vboHandle)
glDrawElements(GL TRIANGLES, 3, GL UNSIGNED INT, ©);
glDisableVertexAttribArray(vertexLocation);
glBindBuffer(GL_ARRAY_BUFFER, 0)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0)

= With FBO 5 ,

// GL Program

glBindBuffer(GL_ARRAY_ BUFFER, vboHandle);
glVertexAttribPointer(vertexLocation, 4, GL_FLOAT,
GL_FALSE, @, 0);
glEnableVertexAttribArray(vertexLocation);
glBindBuffer(GL ELEMENT ARRAY BUFFER, vboHandle)
glDrawElements(GL TRIANGLES, 3, GL UNSIGNED INT, ©);
glDisableVertexAttribArray(vertexLocation); ‘
glBindBuffer(GL_ARRAY_BUFFER, ©)
glBindBuffer(GL_ELEMENT ARRAY_BUFFER, ©)

Texture #

Institute of Computer Graphics and Algorithms 30

What are FBOs used for?

® Shadow Mapping
® Bloom

" HDR

P * Motion Blur

& " Depth of Field

Institute of Computer Graphics and Algorithms 31

What is an FBO?

® FBO is an encapsulation of attachments
B Attachments can be color- or renderbuffers

® Renderbuffers are objects that support off-
screen rendering without an assigned texture

¢ Depth- and stencil-buffer

" There can be more then one color attachment
¢ Number depends on your HW
¢ More than one is advanced stuff

Institute of Computer Graphics and Algorithms 32

Setting up an FBO

® Generating an FBO is done as usual in
OpenGL.:

¢ First generate an OpenGL-"name”
¢ Then bind it to do something with it

GLuint fbo; // this will store our fbo-name

// generate fbo
glGenFramebuffers(1, &fbo);

// bind FBO
glBindFramebuffer(GL_FRAMEBUFFER, fbo);

Institute of Computer Graphics and Algorithms 33

Setting up a renderbuffer

" An FBO on it's own isn't much

" Therefore: attach renderable objects
® So we want to add a depth buffer

® Again, create name and bind it:

GLuint depthbuffer; // this will store our db-name

// create a depth-buffer
glGenRenderbuffers(1l, &depthbuffer);

// bind our depth-buffer
glBindRenderbuffer(GL RENDERBUFFER, depthbuffer);

Institute of Computer Graphics and Algorithms 34

Creating storage-space

® We didn’t create any storage for our render-
buffer yet, so create it...

® _..and attach it to our FBO

// create storage for our renderbuffer

glRenderbufferStorage(GL_RENDERBUFFER, GL_DEPTH_COMPONENT,
width, height);

// attach renderbuffer to FBO

glFramebufferRenderbuffer(GL FRAMEBUFFER,
GL_DEPTH_ATTACHMENT, GL RENDERBUFFER, depthbuffer);

Institute of Computer Graphics and Algorithms 35

Attaching a texture to the FBO

® To render to a texture, we first need one
® We create it as usual

® Note: width and height are the same as those
for the FBO and renderbuffers!

// create a texture
GLuint img;

glGenTextures(1l, &img);
glBindTexture(GL TEXTURE 2D, img);

glTexImage2D(GL TEXTURE 2D, @, GL RGBA8, width, height,
@, GL_RGBA, GL_UNSIGNED BYTE, NULL);

Institute of Computer Graphics and Algorithms 36

Attaching a texture to the FBO (cont.)
= Simply attach the texture to the FBO

// attach texture to fbo
glFramebufferTexture2D(GL FRAMEBUFFER,
GL_COLOR_ATTACHMENT®O, GL TEXTURE 2D, img, ©0);

Institute of Computer Graphics and Algorithms 37

Status checking

" Check, if the creation worked out correctly
u See specification for detailed error-codes

// fbo-creation error-checking
GLenum status =

glCheckFramebufferStatus(GL_FRAMEBUFFER);

if (status != GL_FRAMEBUFFER_COMPLETE) {
// error

¥

Institute of Computer Graphics and Algorithms 38

Rendering to texture

® Bind FBO - render scene — unbind FBO

" Note: need to set viewport for FBO!

// bind fbo
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
glViewport(0, 0, width, height);

// clear our color- and depth-buffer
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH BUFFER_BIT);

// render something here

// unbind fbo
glBindFramebuffer(GL_FRAMEBUFFER, ©);

Institute of Computer Graphics and Algorithms 39

Using the rendered to texture

= Just bind it like a regular texture

¥ Note: If you want to create MIP-maps from it,
use glGenerateMipmap()! (For more see
GameDev][1].)

// bind texture
glBindTexture(GL TEXTURE 2D, img);

Institute of Computer Graphics and Algorithms 40

Cleaning up

" If FBO is not needed anymore, delete it

® Delete also all with the FBO associated
renderbuffers and textures!

// delete fbo
glDeleteFramebuffers(l, &fbo);

// delete renderbuffer
glDeleteRenderbuffers(1l, &depthbuffer);

// delete texture
glDeleteTextures(1l, &img);

Institute of Computer Graphics and Algorithms 41

That's all?

® With an FBO, you can render into more than
one texture simultaneously

® For more check the tutorials at
www.gamedev.net[1] about DrawBuffers

= References:
¢ [1] Gamedev.net

http://www.gamedev.net/reference/programming/features/fbo1/
http://www.gamedev.net/reference/programming/features/fbo2/

Institute of Computer Graphics and Algorithms 42

http://www.gamedev.net/
http://www.gamedev.net/reference/programming/features/fbo2/
http://www.gamedev.net/reference/programming/features/fbo2/

GrentL

Vertexbuffer Objects
VBOs

Why use VBOs?

" Without VBOs = With VBOs
Init() Init():
Load model data from file Load model data from file

Send model data to GPU and
store it in VBOs

Render() Render():
Send model data to GPU Enable VBOs

Render model ‘ Render model

® Slow: Send model data often to GPU
® Fast: Send model data once to GPU
® Conclusion: Use VBOs

Institute of Computer Graphics and Algorithms 44

Create VBOs
® Generate VBO

glGenBuffers(1l, &vboHandle)

glBindBuffer(target, vboHandle);

glBufferData(target, size, data, usage)

u target
¢ GL_ARRAY _ BUFFER

¥ for vertex data: vertex position, normals, tex
coords, tangent vector, ...

¢ GL ELEMENT ARRAY_ BUFFER
® For index data

Institute of Computer Graphics and Algorithms 45

Create VBOs
® Generate VBO

glGenBuffers(1l, &vboHandle)

glBindBuffer(target, vboHandle);

glBufferData(target, size, data, usage)

" size

¢ used memory of data array

¢ e.g. array_length * sizeof(float)
u data

¢ Array containing vertex data

Institute of Computer Graphics and Algorithms 46

Create VBOs

glBindBuffer(target, vboHandle);

glBufferData(target, size, data, usage)

® Generate VBO

glGenBuffers(1l, &vboHandle)

O usage
¢ GL STREAM DRAW, GL STREAM READ,
GL STREAM COPY, GL_STATIC DRAW,
GL STATIC READ, GL_STATIC_COPY,
GL DYNAMIC DRAW,
GL DYNAMIC READ, GL DYNAMIC COPY

Institute of Computer Graphics and Algorithms 47 #

Create VBOs

® ysage

GL_STREAM ...
GL_STATIC ...
GL_DYNAMIC ...
... DRAW
.._READ

.._COPY

You will modify the data once, then use it once, and repeat this
process many times.

You will specify the data only once, then use it many times
without modifying it.

You will specify or modify the data repeatedly, and use it
repeatedly after each time you do this.

The data is generated by the application and passed to GL for
rendering.

The data is generated by GL, and copied into the VBO to be used
for rendering.

The data is generated by GL, and read back by the application. It
is not used by GL.

" GL _STATIC _DRAW should be the most

useful for CG2

Institute of Computer Graphics and Algorithms 48 #

Using VBOs
® Enable VBO and connect to Shader

// first get Llocation

vertexLocation = glGetAttriblLocation(programHandle,
"vertex");

// activate desired VBO
glBindBuffer(GL ARRAY BUFFER, vboHandle);

// set attribute-pointer
glVertexAttribPointer(vertexLocation, 4, GL FLOAT,
GL_FALSE, 0, 0);

// finally enable attribute-array
glEnableVertexAttribArray(vertexLocation);

Institute of Computer Graphics and Algorithms 49

Using VBOs

® Render triangles with DrawArrays or with
DrawElements (if you have indices)

glDrawArrays(GL TRIANGLES, @, 3);

glBindBuffer(GL ELEMENT ARRAY BUFFER, vboHandle)

glDrawElements(GL TRIANGLES, 3, GL _UNSIGNED INT, 0);

® Disable VBOs

glDisableVertexAttribArray(vertexLocation);

glBindBuffer(GL ARRAY BUFFER, @)
glBindBuffer(GL_ELEMENT ARRAY_ BUFFER, ©)

Institute of Computer Graphics and Algorithms 50

Cleaning up

" If VBO is not needed anymore, delete it

glDeleteBuffers(1l, &vboHandle) ‘

® References

¢ OpenGL,
http://www.opengl.org/wiki/Vertex_ Buffer ODbj
ects

¢ DGL Wiki,
http://wiki.delphigl.com/index.php/Tutorial _Ver
texbufferobject

Institute of Computer Graphics and Algorithms 51 #

GrentL

Vertex Array Objects
VAOs

Why use VAOs?
= Without VAOs

Render()

Enable vertex attribute 1

= With VAOs

Render():

Enable VAO

Enable vertex attribute 2
e Render model
Enable vertex attribute n

Disable VAO
Render model

Disable vertex attribute 1
Disable vertex attribute 2

Disable vertex attribute n

pointers

Institute of Computer Graphics and Algorithms

“

® VAOSs are a collection of VBOs and attribute

53

.
.

#

Create VAOs

// Create and Bind VAO
glGenVertexArrays(1, &vaold);
glBindVertexArray(vaold);

// Bind VBO

glBindBuffer(GL ARRAY BUFFER, vbolld);

// Set Attribute Pointer

GLint Loc = glGetAttriblLocation(programHandle, "attribl");
glEnableVertexAttribArray(Lloc);

glVertexAttribPointer(loc, 3, GL FLOAT, GL FALSE, @, 0);

// Continue with other VBOs/AttribPointers

// Unbind VAO
glBindVertexArray(0);

Institute of Computer Graphics and Algorithms 54

Rendering

// Enable Shader
glUseProgram(programHandle) ;

// Bind VAO
glBindVertexArray(vaold);

// Set Render Calls
glDrawElements (GL_TRIANGLES, 3, GL UNSIGNED INT, ©);

// Unbind VAO
glBindVertexArray(0);

// Disable Shader
glUseProgram(0) ;

Institute of Computer Graphics and Algorithms 55

Notes

" Per combination of Shader and Model (VBOs)
one VAO is needed

® Don't call
glBindBuffer(GL _ELEMENT ARRAY_BUFFE

R, 0); when a VAO is bound, or the VAO will
loose the current set index vbo

B References:

¢ OpenGL,
http://www.opengl.org/registry/specs/ARB/vert
ex_array_object.txt

Institute of Computer Graphics and Algorithms 56 #

GrentL

Uniform Buffer Objects
UBOs

Why use UBOs?
= Without UBOs = With UBOs

Render() Render():
Set uniform parameter 1 Enable UBO
Set uniform parameter 2 Pass uniform parameters

500 at once
Set uniform parameter n

Render model

Render model
Disable UBO

Institute of Computer Graphics and Algorithms 58

Uniform Blocks

" In shaders: uniforms are grouped into blocks

" Blocks can have scope names
¢ Access to uniform only via scope name

uniform MaterialBlock { uniform MaterialBlock {
vec3 ambient; vec3 ambient;
vec3 diffuse; vec3 diffuse;
vec3 specular; vec3 specular;
float shininess; float shininess;
}; } material;
void main(void) void main(void)
{ {
out _Color = ambient; out_Color = material.ambient;
} }

Institute of Computer Graphics and Algorithms 59

Uniform Blocks (cont.)

® Data layout should be specified

¢ 3 layouts available: packed, shared, std140
Use Std140 layout(std140) uniform MaterialBlock {

vec3 ambient;
vec3 diffuse;
vec3 specular;
float shininess;

e

® |t is possible to choose between row-major
and column-major for matrices

layout(row_major) uniform;
//Row major is now the default for matrices.

Institute of Computer Graphics and Algorithms 60

Data structure

® The same data structure is needed in both,
the shader and the program

In the shader: In the program:

uniform MaterialBlock { GLfloat material[] =

vec3 ambient; {
vec3 diffuse; 0.3f, 0.3f, 0.3f, // ambient
vec3 specular; 0.6f, 0.6f, 0.6f, // diffuse
float shininess; 0.1f, 0.1f, 0.1f, // specular
}s 50 // shininess
}s

Institute of Computer Graphics and Algorithms 61

Creating UBOs
® Start with getting an id for the UBO

GLuint uboId;
glGenBuffers(1l, &ubold);

® Then get the index of the uniform block
¢ This index helps us to identify a block

GLuint blockIdx;
blockIdx = glGetUniformBlockIndex(programHandle, "MaterialBlock");

Institute of Computer Graphics and Algorithms 62 #

Creating UBOs (cont.)

" You might wanna ask OpenGL for the size of
the block

® The block size should be the same as the size
of the data structure in the program

Glint blockSize;
glGetActiveUniformBlockiv(programHandle, blockIdx,
GL_UNIFORM BLOCK DATA SIZE, &blockSize);

// Test if both data structures have the same size
if(sizeof(material) != blockSize)
ERROR!

Institute of Computer Graphics and Algorithms 63

Creating UBOs (cont.)

® Create the buffer

® Choose DYNAMIC_DRAW since uniforms
might be changed

glBindBuffer(GL UNIFORM BUFFER, uboId);
glBufferData(GL UNIFORM BUFFER, blockSize, NULL, GL_DYNAMIC_ DRAW);

Institute of Computer Graphics and Algorithms 64

Rendering

" For rendering, just pass the data to the UBO

® The uniform blocks will automatically get the

data since they are connected with the UBO
Enable Shader
Connect block/buffer to binding point (see next slide)
// Bind Buffer
glBindBuffer(GL UNIFORM BUFFER, uboId);
// And pass data to UBO
glBufferData(GL UNIFORM BUFFER, blockSize, material,
GL_DYNAMIC_DRAW);
Render Calls

Disable Shader

Institute of Computer Graphics and Algorithms 65

Connect to binding point

® At last, connect the uniform block and the
uniform buffer to a binding point

® Binding points connect uniform blocks to
uniform buffers

® Use different binding points for different
blocks/buffers

¢ Like you should use different texture units for
different textures/samplers

GLuint bindingPoint = 0;
glBindBufferBase(GL UNIFORM BUFFER, bindingPoint, uboId);
glUniformBlockBinding(programHandle, blockIdx, bindingPoint);

Institute of Computer Graphics and Algorithms 66 #

Cleaning up

" If UBO is not needed anymore, delete it

glDeleteBuffers(1l, &uboId); ‘

® References

¢ OpenGL,
http://www.opengl.org/registry/specs/ARB/unif
orm_buffer object.txt

Institute of Computer Graphics and Algorithms 67 ﬁ

Notes on CG2

Notes on CG2

® Textures/VBOs are mandatory

® You also have to implement (at least) one of
the following:

¢ FBOs
¢ VAOs

¢ UBOs

Institute of Computer Graphics and Algorithms 69

	Introduction to OpenGL 3.x and Shader-Programming using GLSL Part 1
	Topics for today
	Slide3
	Slide59
	Slide61
	Slide60
	Folie 7
	Folie 8
	Slide62
	Slide64
	Shader-Execution model
	Rendering-Pipeline
	Slide67
	Slide68
	Folie 15
	Why Texturing?
	Slide9
	Slide8
	Slide69
	Slide70
	Texture Aliasing
	Slide11
	Slide12
	Slide13
	Slide14
	Slide15
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39
	Folie 40
	Folie 41
	Folie 42
	Folie 43
	Folie 44
	Folie 45
	Folie 46
	Folie 47
	Folie 48
	Folie 49
	Folie 50
	Folie 51
	Folie 52
	Folie 53
	Folie 54
	Folie 55
	Folie 56
	Folie 57
	Folie 58
	Folie 59
	Folie 60
	Folie 61
	Folie 62
	Folie 63
	Folie 64
	Folie 65
	Folie 66
	Folie 67
	Folie 68
	Folie 69

