
Introduction to OpenGL 3.x

and

Shader-Programming using GLSL

Part 1

Ingo Radax,

Günther Voglsam

Institute of Computer Graphics and Algorithms

Vienna University of Technology

1

Topics for today

OpenGL 3.x and OpenGL Evolution

OpenGL-Program-Skeleton and OpenGL-

Extensions, GLEW

State-machines and OpenGL-objects life-

cycle

Introduction to Shader-Programming using

GLSL

Institute of Computer Graphics and Algorithms

OpenGL 3.x

Institute of Computer Graphics and Algorithms 3

What is OpenGL?

OpenGL [1] = Open Graphics Library

An open industry-standard API for hardware

accelerated graphics drawing

Implemented by graphics-card vendors

As of 10th March 2010:

Current versions: OpenGL 4.0, GLSL 4.0

Bindings for lots of programming-languages:

C, C++, C#, Java, Fortran, Perl, Python,

Delphi, etc.

Institute of Computer Graphics and Algorithms 4

What is OpenGL?

Maintained by the Khronos-Group [2]:

Members:

Institute of Computer Graphics and Algorithms 5

What is OpenGL?

Pros & Cons:

+ Full specification freely available

+ Everyone can use it

+ Can use it anywhere (Windows, Linux, Mac,

BSD, Mobile phones, Web-pages (soon), …)

+ Long-term maintenance for older applications

+ New functionality usually earlier available

through Extensions

- Inclusion of Extensions to core may take longer

? Game-Industry

Institute of Computer Graphics and Algorithms 6

Setup OpenGL Project

Include OpenGL-header:

Link OpenGL-library “opengl32.lib”

If needed, also link other libraries (esp.

GLEW, see later!).

#include <GL/gl.h> // basic OpenGL

Institute of Computer Graphics and Algorithms 7

OpenGL in more detail

OpenGL-functions prefixed with “gl”:

OpenGL-constants prefixed with “GL_”:

OpenGL-types prefixed with “GL”:

GLtype

Example: GLfloat

glFunction{1234}{bsifd...}{v}(T arg1, T arg2, ...);

Example: glDrawArrays(GL_TRIANGLES, 0, vertexCount);

GL_SOME_CONSTANT

Example: GL_TRIANGLES

OpenGL in more detail

OpenGL is a state-machine

Remember state-machines:

Once a state is set, it remains active

until the state is changed to something else

via a transition.

A transition in OpenGL

equals a function-call.

A state in OpenGL is

defined by the OpenGL-

objects which are current.

8Institute of Computer Graphics and Algorithms

Institute of Computer Graphics and Algorithms 9

OpenGL in more detail

Set OpenGL-states:

Query OpenGL-states with Get-Methods:

For complete API see [3] and especially the

quick-reference [4]!

Note: In the references the gl-prefixes are

omitted due to readability!

glEnable(...);
glDisable(...);
gl*(...); // several call depending on purpose

glGet*(...); // several calls available, depending on
what to query

10

OpenGL 2.1

Released in August 2006

Fully supported “fixed function” (FF) *)

GLSL-Shaders supported as well

Mix of FF and shaders was possible, which

could get confusing or clumsy quickly in

bigger applications

Supported by all graphics-drivers

*) See “Introduction to Shader-Programming using GLSL” for more

information on FF.

Institute of Computer Graphics and Algorithms

11

OpenGL 3.0

Released in August 2008

Introduced a deprecation model:

Mainly FF was marked deprecated

Use of FF still possible, but not recommend

Also introduced Contexts:

Forward-Compatible Context (FWD-CC) vs.

Full Context

With FWD-CC, no access to FF anymore, i.e.

FF-function-calls create error “Invalid Call”.

Institute of Computer Graphics and Algorithms

12

OpenGL 3.0

Furthermore, GLSL 1.3 was introduced

Supported by recent Nvidia and ATI-graphics

drivers.

Institute of Computer Graphics and Algorithms

13

OpenGL 3.1

Released in March 2009

Introduced GLSL 1.4

Removed deprecated features of 3.0,

but FF can still be accessed by using the

“GL_ARB_compatibility”-extension.

Supported by recent Nvidia and ATI-graphics

drivers.

Institute of Computer Graphics and Algorithms

14

OpenGL 3.2

Released in August 2009

Profiles were introduced:

Core-Profile vs.

Compatibility-Profile

With Core-Profile, only access to OpenGL 3.2

core-functions

With Compatibility-Profile, FF can still be used

Also introduced GLSL 1.5

Supported by recent Nvidia and ATI-graphics

drivers.
Institute of Computer Graphics and Algorithms

15

OpenGL 3.3

Released on 10th March 2010

Introduces GLSL 3.3

Includes some new Extensions

Maintains compatibility with older hardware

Currently no drivers available

Will be supported by Nvidia‟s Fermi

architecture immediately when Fermi will be

released (scheduled: March 29th 2010).

Institute of Computer Graphics and Algorithms

16

OpenGL 4.0

Released on 10th March 2010

Introduces GLSL 4.0

Introduces new shader-stages for hardware-

tesselation.

Adoption of new Extensions to Core.

Currently no drivers available

Will be supported by Nvidia‟s Fermi

architecture immediately when Fermi will be

released (scheduled: March 29th 2010).

Institute of Computer Graphics and Algorithms

17

OpenGL Evolution

Overview of the evolution:

FF equals roughly in other versions:

Important!

See the Quick-Reference Guide [4] for the

“current” (=3.2) OpenGL-API!

2.1 3.0 3.1 3.2/3.3/4.0

FF Deprecated

Features and

Non-FWD-CC

"GL_ARB_

compatibility"

extension

Compatibility-

Profile

Institute of Computer Graphics and Algorithms

18

OpenGL Evolution

Note that from OpenGL 3.x (FWD-CC || Core)

onwards there is no more built-in:

Immediate-Mode

Matrix-Stacks and Transformations

Lighting and Materials

You have to do “missing” stuff by yourself!

That‟s why there are shader. (More on shader

later on.)

Institute of Computer Graphics and Algorithms

OpenGL Extensions

Extensions are additional and newer functions

which are not supported by the core of the

current OpenGL-version.

Collected and registered in the OpenGL

Extension Registry [5].

Extensions may eventually be adopted into

the OpenGL core at the next version.

19Institute of Computer Graphics and Algorithms

GLEW

On Windows only OpenGL 1.1 supported

natively.

To use newer OpenGL versions, each

additional function, i.e. ALL extensions

(currently ~1900), must be loaded manually!

 Lots of work!

Therefore:

Use GLEW [6] = OpenGL Extension Wrangler

20Institute of Computer Graphics and Algorithms

GLEW

Include it in your program and initialize it:

21Institute of Computer Graphics and Algorithms

#include <GL/glew.h> // include before other GL headers!
// #include <GL/gl.h> included with GLEW already

void initGLEW()
{

GLenum err = glewInit(); // initialize GLEW

if (err != GLEW_OK) // check for error
{

cout << "GLEW Error: " << glewGetErrorString(err);
exit(1);

}
}

GLEW

Check for supported OpenGL version:

To check for a specific extension:

22Institute of Computer Graphics and Algorithms

if (glewIsSupported("GL_VERSION_3_2"))
{

// OpenGL 3.2 supported on this system
}

if (GLEW_ARB_geometry_shader4)
{

// Geometry-Shader supported on this system
}

No-FF in OpenGL 2.1

If OpenGL 3.x context can not be created on

your hardware one can use 2.1 without the

„fixed function“-pipeline:

Be sure to use the latest drivers, libs et al and

test if our OpenGL 3.x demo is running!

If it doesn„t work out, you can use OpenGL

2.1 w/o FF.

This means…

23Institute of Computer Graphics and Algorithms

No-FF in OpenGL 2.1

Do NOT use the following in OpenGL 2.1:

Built-In matrix-functions/stacks:
glMatrixMode, glMult/LoadMatrix,
glRotate/Translate/Scale, glPush/PopMatrix…

Immediate Mode:
glBegin/End, glVertex, glTexCoords…

Material and Lighting:
glLight, glMaterial, …

Attribute-Stack:
glPush/PopAttrib, …

24Institute of Computer Graphics and Algorithms

No-FF in OpenGL 2.1

some Primitive Modes:
GL_QUAD*, GL_POLYGON

Do NOT use the following in GLSL 1.1/1.2:
ftransform()

All built-in gl_*-variables, except:

gl_Position in vertex-shader

gl_FragColor, gl_FragData[] in fragment-shader

25Institute of Computer Graphics and Algorithms

No-FF in OpenGL 2.1

The list may not be complete!

To see what can be used and what not, see

the quick-reference guide [4]!

Everything written in black is allowed; blue is

not allowed. (But we will not be too strict about

that in CG2LU.)

If you are not sure what you can use, do it the

way it works for you and ASK US in the forum

or by PM.

26Institute of Computer Graphics and Algorithms

Notes

Be sure to use the most recent version

working on your hardware (and use: no FF ||

no deprecation || Full-Context || Core-Profile)!

Be sure to see the 8-page Quick-Reference

Guide [4] for the current OpenGL-API!

Use the (complete) specification [3] for

detailed information on a particular OpenGL-

method!

27Institute of Computer Graphics and Algorithms

References

[1] OpenGL, http://www.opengl.org

[2] Khronos Group, http://www.khronos.org

[3] OpenGL Specification, http://www.opengl.org/registry

[4] OpenGL 3.2 API Quick Reference Card,

http://www.khronos.org/files/opengl-quick-reference-

card.pdf

[5] OpenGL Extension Registry,

http://www.opengl.org/registry

[6] GLEW – OpenGL Extension Wrangler Library,

http://glew.sourceforge.net

[7] DGL Wiki, http://wiki.delphigl.com

28Institute of Computer Graphics and Algorithms

http://www.khronos.org/
http://www.khronos.org/
http://www.khronos.org/files/opengl-quick-reference-card.pdf
http://www.opengl.org/registry
http://www.khronos.org/files/opengl-quick-reference-card.pdf
http://www.khronos.org/files/opengl-quick-reference-card.pdf
http://www.khronos.org/files/opengl-quick-reference-card.pdf
http://www.khronos.org/files/opengl-quick-reference-card.pdf
http://www.khronos.org/files/opengl-quick-reference-card.pdf
http://www.khronos.org/files/opengl-quick-reference-card.pdf
http://www.khronos.org/files/opengl-quick-reference-card.pdf
http://www.opengl.org/registry
http://glew.sourceforge.net/
http://glew.sourceforge.net/

OpenGL Program-Skeleton

OpenGL Program Skeleton

Typical OpenGL-program runs in a window

(maybe fullscreen)

Therefore: window-loop-based applications

Independent of window-manager!

Can use: GLFW, SDL, WinAPI, (GLUT), Qt,

…

Choose the one you like most.

We recommend using GLFW [1]. For more

information about GLFW check the LU-HP [2]!

30Institute of Computer Graphics and Algorithms

OpenGL Program Skeleton

Typical OpenGL-Application:

31Institute of Computer Graphics and Algorithms

main()

init()

update()

render()

cleanup()

Start Application

Main-loop

Exit application

OpenGL Program Skeleton

main():

Program-Entry

Create window

Call init()

Start main window-loop

Call cleanup()

Exit application

init():

Initialize libraries, load config-files, …

Allocate resources, preprocessing, …
32Institute of Computer Graphics and Algorithms

OpenGL Program Skeleton

update():

Handle user-input, update game-logic, …

render():

Do actual rendering of graphics here!

Note: Calling render() twice without calling

update() in between should result in the same

rendered image!

cleanup():

Free all resources

33Institute of Computer Graphics and Algorithms

OpenGL Program Skeleton

Example init()-function:

34Institute of Computer Graphics and Algorithms

void init() {
Create and initialize a window with depth-buffer and double-
buffering. See your window-managers documentation.

// enable the depth-buffer in OpenGL
glEnable(GL_DEPTH_TEST);

// enable back-face culling in OpenGL
glEnable(GL_CULL_FACE);

// define a clear color
glClearColor(0.0f, 0.0f, 0.0f, 0.0f);

// set the OpenGL-viewport
glViewPort(0, 0, windowWidth, windowHeight);

Do other useful things
}

Institute of Computer Graphics and Algorithms 35

OpenGL Program Skeleton

The geometry of a 3D-object is stored in an

array of vertices called Vertex-Array.

Each vertex can have so called Attributes, like

a Normal Vector and Texture-Coordinates.

OpenGL also treats vertices as attributes!

To render geometry in OpenGL, vertex-

(attribute)-arrays are passed to OpenGL and

then rendered.

Institute of Computer Graphics and Algorithms 36

OpenGL Program Skeleton

To do so:

Query the attribute-location in the shader: *)

Enable an array for the vertex-attribute:

Then tell OpenGL which data to use:

*) See “Introduction to Shader-Programming using GLSL” for more

information on shader attribute-variables.

GLint vertexLocation = glGetAttribLocation(
myShaderProgram, "in_Position");

glEnableVertexAttribArray(vertexLocation);

glVertexAttribPointer(vertexLocation, 3, GL_FLOAT,
GL_FALSE, 0, myVertexArray);

Institute of Computer Graphics and Algorithms 37

OpenGL Program Skeleton

Draw (“render”) the arrays:

Finally disable the attribute-array:

See the demo on the LU-HP for full program

and code!

glDrawArrays(GL_TRIANGLES, 0, 3); // this does the
actual drawing!

glDisableVertexAttribArray(vertexLocation);

OpenGL Program Skeleton

Example render()-function:

38Institute of Computer Graphics and Algorithms

// triangle data
static GLfloat vertices[] = {-0.5, -0.333333, 0, // x1, y1, z1

+0.5, -0.333333, 0, // x2, y2, z2
+0.0, +0.666666, 0}; // x3, y3, z3

...

void render() {
// clear the color-buffer and the depth-buffer
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

// activate a shader program
glUseProgram(myShaderProgram);

// Find the attributes
GLint vertexLocation = glGetAttribLocation(

myShaderProgram, "in_Position");

OpenGL Program Skeleton

39Institute of Computer Graphics and Algorithms

// enable vertex attribute array for this attribute
glEnableVertexAttribArray(vertexLocation);

// set attribute pointer
glVertexAttribPointer(vertexLocation, 3, GL_FLOAT,

GL_FALSE, 0, vertices);

// Draw ("render") the triangle
glDrawArrays(GL_TRIANGLES, 0, 3);

// Done with rendering. Disable vertex attribute array
glDisableVertexAttribArray(vertexLocation);

// disable shader program
glUseProgram(0);

Swap buffers
}

OpenGL-Object life-cycle

In OpenGL, all objects, like buffers and

textures, are somehow treated the same way.

On object creation and initialization:

First, create a handle to the object (in

OpenGL often called a name). Do this ONCE

for each object.

Then, bind the object to make it current.

Pass data to OpenGL. As long as the data

does not change, you only have to do this

ONCE.

Unbind the object if not used.
40Institute of Computer Graphics and Algorithms

OpenGL-Object life-cycle

On rendering, or whenever the object is used:

Bind it to make it current.

Use it.

Unbind it.

Finally, when object is not needed anymore:

Delete object.

Note that in some cases you manually have to

delete attached resources!

NOTE: OpenGL-objects are NOT objects in

an OOP-sense!

41Institute of Computer Graphics and Algorithms

References

[1] GLFW, http://glfw.sourceforge.net

[2] Computergraphics 2 Lab, TU Vienna,

http://www.cg.tuwien.ac.at/courses/CG23/LU.html

42Institute of Computer Graphics and Algorithms

http://glfw.sourceforge.net/
http://www.opengl.org/registry

Introduction to Shader-

Programming using GLSL

What shaders are

Small C-like programs executed on the

graphics-hardware

Replace fixed function pipeline with shaders

Shader-Types

Vertex Shader (VS): per vertex operations

Geometry Shader (GS): per primitive

operations

Fragment shader (FS): per fragment

operations

Used e.g. for transformations and lighting

44Institute of Computer Graphics and Algorithms

Shader-Execution model

45

Application
Shader-Source-Code

OpenGL-API

OpenGL-Driver

Compiler

Linker

Shader-

Object

Program-

Object

Graphics-Hardware

compiled code

executable code

Institute of Computer Graphics and Algorithms

Hardware (GPU)

Rendering-Pipeline

OpenGL 3.x Rendering-Pipeline:

46Institute of Computer Graphics and Algorithms

Geometry
Vertex-

Shader
Primitive

Assembly

Clip

Project

Viewport

Cull

Rasterize Fragment-

Shader

Per

Fragment

Operations

Framebuffer

Operations

Framebuffer

Programmable!

Rendering-Pipeline

Remember:

The Vertex-Shader is executed ONCE per

each vertex!

The Fragment-Shader is executed ONCE per

rasterized fragment (~ a pixel)!

A Shader-Program consists of both,

One VS

One FS

47Institute of Computer Graphics and Algorithms

Setting up shaders and programs

Compile shaders:

Create program and attach shaders to it:

Finally link program:

48

char* shaderSource; // contains shadersource
int shaderHandle = glCreateShader(GL_SHADER_TYPE);

// shader-types: vertex || geometry || fragment
glShaderSource(shaderHandle, 1, shaderSource, NULL);
glCompileShader(shaderHandle);

int programHandle = glCreateProgram();
glAttachShader(programHandle, shaderHandle); // do this
for vertex AND fragment-shader (AND geometry if needed)!

glLinkProgram(programHandle);

Institute of Computer Graphics and Algorithms

Enabling shaders

Enable a GLSL program:

The active shader-program will be used until

glUseProgram() is called again with another

program-handle.

Call of glUseProgram(0) sets no program

active (undefined state!).

49

glUseProgram(programHandle); // shader-program now
active

Institute of Computer Graphics and Algorithms

Shader Error checking

Do this for each shader to check for error:

50

bool succeeded = false;
glGetShader(shaderHandle, GL_COMPILE_STATUS, &succeeded);

if (!succeeded) // check if something went wrong while compiling
{

// get log-length
int logLength = 0;
glGetShader(shaderHandle, GL_INFO_LOG_LENGTH, &logLength);

// get info-log
std::string infoLog(logLength, '');
glGetShaderInfoLog(shaderHandle, logLength, NULL, &infoLog[0]);

// print info-log
std::cout << "Shader compile error:\n\n" << infoLog <<
std::endl;

}

Institute of Computer Graphics and Algorithms

Progam Error checking

Do this for each program to check for error:

51

bool succeeded = false;
glGetProgram(programHandle, GL_LINK_STATUS, &succeeded);

if (!succeeded) // check if something went wrong while compiling
{ // get log-length

int logLength = 0;
glGetProgram(programHandle, GL_INFO_LOG_LENGTH, &logLength);

// get info-log
std::string infoLog(logLength, '');
glGetProgramInfoLog(programHandle, logLength, NULL,

&infoLog[0]);

// print info-log
std::cout << "Program linking error:\n\n" << infoLog <<
std::endl;

}

Institute of Computer Graphics and Algorithms

Basic shader layout

Shader-Programs must have a main()-method

Vertex-Shader outputs to at least gl_Position

Fragment-Shader to custum defined output

52

//preprocessor directives like:

#version 150

variable declarations

void main()
{

do something and write into output variables
}

Institute of Computer Graphics and Algorithms

Shader Parameter

Shader variable examples:

Three types:

uniform: does not change per primitive; read-

only in shaders

in: VS: input changes per vertex, read-only;

FS: interpolated input; read-only

out: shader-output; VS to FS; FS output.

53

uniform mat4 projMatrix; // uniform input

in vec4 vertex; // attribut-input

out vec3 fragColor; // shader output

Institute of Computer Graphics and Algorithms

Uniform Parameter

Set uniform parameters in an application:

First get the „location“ of the uniform-variable

Then set the current value

Can pass values to vertex- and fragment-

shader
54

// first get location
projMtxLoc = glGetUniformLocation(programHandle,

"projMatrix");

// then set current value
glUniformMatrix4fv(projMtxLoc, 1, GL_FALSE,

currentProjectionMatrix);

Institute of Computer Graphics and Algorithms

Attribute Parameter

A vertex can have attributes like a normal-

vector or texture-coordinates

OpenGL also treats the vertex itself as an

attribute

We want to access our current vertex within

our vertex-shader (as we used to do with

gl_Vertex in former GLSL-versions):

Therefore, we declare in our vertex-shader:

55

in vec4 vertex; // vertex attribut

Institute of Computer Graphics and Algorithms

Attribute Parameter

Now, there are two ways to pass data to this

shader attribute-variable, depending on:

if you just have an array of vertices (Vertex

Array),

or an VBO (Vertex Buffer Object, more about

that next week!).

To do so: Query shader-variable location

Enable vertex-attribute array

Set pointer to array

Draw and disable array

56Institute of Computer Graphics and Algorithms

Attribute Parameter

For a Vertex-Array, pass data like this:

57Institute of Computer Graphics and Algorithms

// first get the attribute-location
vertexLocation = glGetAttribLocation(programHandle,

"vertex");

// enable an array for the attribute
glEnableVertexAttribArray(vertexLocation);

// set attribute pointer
glVertexAttribPointer(vertexLocation, 3, GL_FLOAT,

GL_FALSE, 0, myVertexArray);

// Draw ("render") the triangle
glDrawArrays(GL_TRIANGLES, 0, 3);

// Done with rendering. Disable vertex attribute array
glDisableVertexAttribArray(vertexLocation);

Attribute Parameter

Setting attribute parameters with VBOs:

58

// first get location
vertexLocation = glGetAttribLocation(programHandle,

"vertex");

// activate desired VBO
glBindBuffer(GL_ARRAY_BUFFER, vertexBuffer);

// set attribute-pointer
glVertexAttribPointer(vertexLocation, 4, GL_FLOAT,

GL_FALSE, 0, 0);

// finally enable attribute-array
glEnableVertexAttribArray(vertexLocation);

...

Institute of Computer Graphics and Algorithms

Fragment Output

Since GLSL 1.3, gl_FragColor is depreceated.

Therefore, need to define output on our own.

Declare output variable in FS:

In the application, before linking the shader-

program with glLinkProgram(), bind the FS-

output:

Finally assign a value to fragColor in the FS.

59

out vec4 fragColor; // fragment color output

glBindFragDataLocation(programHandle, 0, "fragColor");

Institute of Computer Graphics and Algorithms

Example usage

An application using shaders could basicially

look like this:

60

Load shader and initialize parameter-handles

Do some useful stuff like binding texture, activate
texture-units, calculate and update matrices, etc.

glUseProgram(programHandle);

Set shader-parameters
Draw geometry

glUseProgram(anotherProgramHandle);

...

Institute of Computer Graphics and Algorithms

Conclusion and Tips

Setup is more complicated nowadays, but

more flexible.

Use the info-log to debug!

Use tools like gDebugger (see some LU-HP

and forum!) for better debugging!

See the specifications [1] for exact information

on methods!

Look at useful examples at [2]!

Have fun with OpenGL!

61Institute of Computer Graphics and Algorithms

References

[1] OpenGL Registry, http://www.opengl.org/registry/

[2] Norbert Nopper, http://nopper.tv/opengl_3_1.html

62Institute of Computer Graphics and Algorithms

http://www.opengl.org/registry/
http://nopper.tv/opengl_3_1.html

Resources

OpenGL „Red Book“

OpenGL „Orange Book“

OpenGL Registry, http://www.opengl.org/registry/

DGL Wiki, http://wiki.delphigl.com

Norbert Nopper, http://nopper.tv/opengl_3_2.html

LightHouse 3D, http://www.lighthouse3d.com/opengl/

NeHe, http://nehe.gamedev.net

GameDev, http://www.gamedev.net

Nvidia Developer pages, esp. the OpenGL SDK,

http://developer.nvidia.com

Graphic Remedy„s gDEBugger, http://www.gremedy.com

We have a academic license for it, so USE it!!

63Institute of Computer Graphics and Algorithms

http://www.opengl.org/registry/
http://nopper.tv/opengl_3_1.html
http://nopper.tv/opengl_3_1.html
http://nopper.tv/opengl_3_1.html
http://nehe.gamedev.net/
http://nopper.tv/opengl_3_1.html
http://nopper.tv/opengl_3_1.html
http://nopper.tv/opengl_3_1.html

Questions?

Thanks for your time!

64

