C++ Introductory Tutorial

Part Il

Institute of Computer Graphics and Algorithms

Vienna University of Technology

Today

Operator Overloading

Templates

STL

Short Recap

Classes cont’'d
¢ Methods C++ silently writes and calls
¢ Interfaces in C++
¢ The 4 casts of C++

= EXxceptions

m Shared Pointer

Institute of Computer Graphics and Algorithms 1

Last Session’s Topics

Stages of the C++ build process
Basic syntax

Declaration vs. Definition (Headers)
Data types

Pointer & References

mportant C++ operators

Global Scope

Const correctness

Passing variables

Stack & Heap Memory

Classes & Polymorphism

Institute of Computer Graphics and Algorithms 2

C Plus Plus

m Developed by Bjarne Stroustrup
¢ 1979 Bell Labs
¢ Originally named C with Classes

m Powerful type-safe language

m Used in

¢ Games

¢ Embedded Systems

¢ High-performance application

¢ Drivers, Kernels,...

Institute of Computer Graphics and Algorithms 3

C Plus Plus

m C++ Is a federation of 4 languages

¢ C

= You can still do any low level C stuff (comes in
handy when using C APIs like OpenGL)

¢ Object oriented C++
= Classes, Polymorphism, OOP
¢ Template C++

= Generic programming, template
metaprogramming

¢ Standard Template Library (STL)

= A set of standard algorithms and data
structures for C++

Institute of Computer Graphics and Algorithms 4

Operator Overloading

class my vector {

public:
float x,y;

my vector(void) : x(@.0f), y(@.0f) {}

my vector(float nx, float ny)
b5

my_vector v1(3.0f, -4.0f);
my_vector v2(-6.0f, 5.0f);

vl + v2;

Institute of Computer Graphics and Algorithms 5

 x(nx), y(ny) {}

Operator Overloading - Version 1

class my vector {

my vector operator+(const my vector &second) const {
cout << "operator+ in class" << endl;
return my vector(this->x + second.x, this->y + second.y);

}
s

my_vector v1(3.0f, -4.0f);
my_vector v2(-6.0f, 5.0f);

vl + v2;
vl.operator+(v2);

Institute of Computer Graphics and Algorithms 6

Operator Overloading - Version 2

class my vector {

friend my vector operator+(const my vector &first,
const my vector &second);

s

my vector operator+(const my vector &first,
const my vector &second) {
cout << "operator+ outside class" << endl;
return my vector(first.x + second.x, first.y + second.y);

¥

vl + v2;
vl.operator+(v2);

operator+(vl, v2);

Institute of Computer Graphics and Algorithms 7

Operator Overloading - Version 1 or 2 ?

m Overloading inside class

¢ access to private class-data (no need for
"friend")

¢ 1st operator must be of class-type

m Overloading outside class

¢ If access to private class members is needed,
add "friend" to the method-declaration and put
declaration inside the class

¢ full control over parameters (at least one must
be of class-type, but need not be the first
parameter)

Institute of Computer Graphics and Algorithms 8 ﬁ

Operator Overloading - Printing

class my vector {

friend std::ostream &operator<<(std::ostream &out,
const my vector &v) {

out << "(" << (v.x) << " | " << (vay) << ")
return out;

}
s

my vector v1(3.0f, -4.0f);

cout << vl << endl;

Institute of Computer Graphics and Algorithms 9

Operator Overloading — Pre-/Postfix

class my vector {

my vector &operator++(void) {
++X; ++Y;
return *this;

¥

my vector operator++(int dummy) {
my vector tmp(x,y);
X++; y++;
return tmp;

}
s

Institute of Computer Graphics and Algorithms 10

Strings

m C-strings are just null-terminated char-arrays

¢ programmer has to take care of mem-
allocation

¢ at |least several lib-functions like strcpy(),
strcat(), strcmp(), strlen(), strtod(), etc.

m C++-strings are class-objects
¢ many operators pre-defined

¢ no explicit mem-allocation necessary
= less error-prone

Institute of Computer Graphics and Algorithms 11

Strings

#include <string>

std::string cpp strl("strl");
std::string cpp str2("str2");
std::string cpp_str;

cpp_str = cpp_strl + + cpp _str2;

cpp_str.append(" appended");

cout << "cpp str.length() = " << cpp_str.length() << endl;

cout << "cpp_str = << cpp_str << endl;

Institute of Computer Graphics and Algorithms 12

Strings — C++to C

#include <stdio.h>
#include <string>

void a_C _param_func(const char *c_str)

{
printf("C: c_str = %s\n", c_str);
std::cout << "C++: c str = " << c_str << std::endl;

¥

std::string cpp_str("Let's (inter)face it, we all love C!");

a_C _param_func(cpp_str.c_str());

Institute of Computer Graphics and Algorithms 13 #

Templates

= C++ way of generic programming
¢ generic ... type itself Is a parameter

m Frees programmer from the need to copy-
paste functions for different data types

¢ C++ compiler generates needed code from
template

= = compile-time polymorphism

Institute of Computer Graphics and Algorithms 14

Templates — Example (Motivation)

int my max(int vall, int val2) {
if(vall >= val2)
return vall;
else
return val2;

¥

//we could add overladed versions of my _max() for other
types:
/>|<
float my max(float vall, float val2) {
return (vall >= val2) ? vall : val2;

}

std::string my max(std::string vall, std::string val2) {
return (vall >= val2) ? vall : val2;

}
*/

Institute of Computer Graphics and Algorithms 15

Templates - Example (Motivation)

[
N
oo

int 1 _vall
int i _val2

|
U1
oo

cout << my max(i vall, i val2) << endl;

Institute of Computer Graphics and Algorithms 16

Templates - Example (Motivation)

float f vall = 4.5f;
float £ val2 = 5.5f;

// ==> float , float

// 1f the float-version of my max 1s not defined,

// the maximum float value will be cast to an integer!
// at Lleast the call will work due to implicit cast
// float-to-1int...

// prints “5” instead of “5.5”
cout << my max(f_vall, f val2) << endl;

Institute of Computer Graphics and Algorithms 17

Templates - Example (Motivation)

std::string s vall("four");
std::string s val2("five");

cout << my_max(s_vall, s val2) << endl;

Institute of Computer Graphics and Algorithms 18

Templates - Example

template<typename T>
T my generic_max(T vall, T val2)

{
if(vall >= val2)
return vall;
else

return val2;

Institute of Computer Graphics and Algorithms 19

Templates - Example

int 1 vall = 4;
float f val2 = 5.57;

cout << my_generic max(i vall, f val2) << endl;

cout << my_generic _max<int>(i_vall, f val2) << endl;
cout << my_generic_max<float>(i_vall, f val2) << endl;

Institute of Computer Graphics and Algorithms 20

Templates - Example

const char *sl = "Vienna";
const char *s2 = "Baden";

cout << my_generic _max(sl, s2) << endl;
// prints "Baden" without a specialized function
// for handling C-strings; the problem 1s, that

// the strings' addresses are compared,
// not the strings themselves!

Institute of Computer Graphics and Algorithms 21

Templates - Example (Motivation)

template<>
const char *my_generic_max<const char *>(const char *vall,

const char *val2) {
cout << "template specialized for C-strings!"” << endl;

if(std::strcmp(vall, val2) >= 0)
return vall;

else
return val2;

cout << my generic_max(sl, s2) << endl;

Institute of Computer Graphics and Algorithms 22

STL

m STL ... Standard Template Library

m Software library that offers
¢ containers
¢ Iterators
¢ algorithms
¢ functors

m Can be used with any built-in and user-
defined type

¢ sometimes certain operators must be defined
for used types

Institute of Computer Graphics and Algorithms 23 #

STL — A Quick Overview

m STL containers store data
¢ Some containers are
= vector, list, queue, stack, map, pair

m STL iterators make it possible to step through
the containers and randomly access elements

m STL algorithms perform common operations
such as searching and sorting

m STL functors

¢ functors are classes that overload the function
operator operator()

Institute of Computer Graphics and Algorithms 24 #

STL - Vectors

m C++ blend of C-arrays

¢ dynamic array

= resizing (+memory management) done
automatically

¢ random access
¢ Inserting-/erasing possible

= Can still be passed to functions which expect
"corresponding” C-arrays/C-pointers

Institute of Computer Graphics and Algorithms 25

STL - Vectors

##tinclude <vector>

float curr_val = 0.0f;
std: :vector<float> f vec;

cout << "f vec.capacity() = " << f _vec.capacity() << endl;
cout << "f vec.size() = " << f vec.size() << endl;

for(int i=0; i<10; i++, curr_val+=0.1f)
f vec.push _back(curr_val);

cout << "f vec.capacity() = " << f_vec.capacity() << endl;

cout << "f vec.size() = " << f_vec.size() << endl;

Institute of Computer Graphics and Algorithms 26

STL - Vectors

##tinclude <vector>

float curr_val = 0.0f;
std::vector<float> f vec(10);

cout << "f vec.capacity() = " << f _vec.capacity() << endl;
cout << "f vec.size() = " << f vec.size() << endl;

for(int i=0; i<10; i++, curr_val+=0.1f)
f vec.at(i) = curr_val;

cout << "f vec.capacity() = " << f_vec.capacity() << endl;
cout << "f vec.size() = " << f_vec.size() << endl;

Institute of Computer Graphics and Algorithms 27

STL - Vectors

##tinclude <vector>

std: :vector<float> f vec(10);

try {
for(int i=0; i<100; i++, curr_val+=0.1f) {
f vec.at(i) = curr_val;
f vec[i] = curr_val;

}

}

catch(std::out_of range &e) {
std::cerr << "oops, out of bounds!!!" << std::endl;
std::cerr << e.what() << std::endl;

}

Institute of Computer Graphics and Algorithms 28

STL - Vectors

void print_vec(std::vector<std::string> &vec) {

std::vector<std::string>::iterator it = vec.begin();
for(; it != vec.end(); ++it) {
std::cout << (*it) << std::endl;

¥

void print_vec(const std::vector<std::string> &vec) {

std::vector<std::string>::const_iterator it = vec.begin();
for(; it != vec.end(); ++it) {
std::cout << (*it) << std::endl;
}
}

Institute of Computer Graphics and Algorithms 29

STL - Vectors (C - interface)

void a_C _param_func(const unsigned int array len,
const float *float ptr) {

for(int i=0; i<array len; i++) {
cout << "float ptr[" << 1 << "]=" << float ptr[i] << endl;

}
}

a_C_param_func(float_vec.size(),
static_cast<float *>(&(float_vec[@])));

a_C param_func(float vec.size(), &(float vec[O]));

Institute of Computer Graphics and Algorithms 30

STL - Pairs

m 2-tuple of data elements

¢ 1st element called "first"

¢ 2nd element called "second"
m Can be

¢ assigned

¢ copied

¢ compared

Institute of Computer Graphics and Algorithms 31

STL - Maps

m Associative array

m Maps one data item (key) to another (value)
= Type of key must implement "<"
m ODbjects stored In array are of type pair

Institute of Computer Graphics and Algorithms 32

STL - Maps

#include <map>

std: :map<int, std::string> assoc_map;

assoc_map[3] = "three";
assoc_map[1l] = "one";
assoc_map[4] = "four";

std::map<int, std::string>::iterator it = assoc_map.begin();

for(; it != assoc_map.end(); ++it) {
cout << "it->first = " << it->first << " , ";
cout << "it->second = " << it->second << endl;

Institute of Computer Graphics and Algorithms 33

STL - Maps

#include <map>

std: :map<std::string, int> assoc_map;

assoc_map["one"] = 1;
assoc_map["two"] = 2;
assoc_map["four"] = 4;

std::map<std::string, int>::iterator it = assoc_map.begin();

for(; it != assoc_map.end(); ++it) {
cout << "it->first = " << it->first << " , ";
cout << "it->second = " << it->second << endl;
}

Institute of Computer Graphics and Algorithms 34

Miscellaneous - Common Pitfalls

int* a, b;

// NOTE: b 1s NOT pointer-to-int!
// a 1s pointer-to-int, b 1s 1int
// equivalent to:

// 1int *a;
// 1int b;
int tmp=23;

int& c=tmp, d=tmp;

// NOTE: d 1s NOT reference-to-1int!
// € 1s reference-to-int, d i1s 1int
// equivalent to:

// int &c=tmp;

// int d=tmp;

Institute of Computer Graphics and Algorithms 35

Miscellaneous - Common Pitfalls

// this might (or might not) compile, depending
// on your compiler:
std: :map<int, std::vector<int>> some_map;

// PROBLEM:

// the compiler might not parse the above
// as two separate ">" symbols

// ==> don't forget to insert a whitespace between
// the two ">"

std: :map<int, std::vector<int> > some_map;

—

n n

>>" correctly

n

Institute of Computer Graphics and Algorithms 36

Miscellaneous - Reading a File

#include <fstream>
string read file(const string &filename) {
std::ifstream ifile(filename.c_str());

return string(std::istreambuf iterator<char>(ifile),
std: :istreambuf_iterator<char>());

Institute of Computer Graphics and Algorithms 37

Miscellaneous — Writing to a File

#include <fstream>
void write _string to file(const string &file name,
const string &str) {

std::ofstream out file;

out file.open(file name.c_str());

out file << str << endl;

out file.close();

}

Institute of Computer Graphics and Algorithms 38

Miscellaneous — Converting to String

#tinclude <sstream>

template<typename T>

std::string to _string(const T &val) {
std::ostringstream oss;
0SS << val;
return oss.str();

¥

int 1=123;
std::string conversion to string = to string(i);

Institute of Computer Graphics and Algorithms 39

Miscellaneous — Converting from String

#tinclude <sstream>

template<typename T>

T from_string(const std::string &str, T &t) {
std::istringstream iss(str);
iss >> t;
return t;

¥

int num;
from_string("54321" , num);

Institute of Computer Graphics and Algorithms 40

Miscellaneous — Including Files

m Different syntax for the preprocessor directive #include

¢ basic difference is the search strategy to find
header files

Institute of Computer Graphics and Algorithms 41

Miscellaneous — Including Files

m <> used for "standard include files"

¢ search for file starts in include directories (directory

which is defined first is also searched first)
#include <GL/glew.h>

¢ for system header files, no suffix necessary

#include <iostream>
= might not even exist as actual files, are just "known"

» for each C-standard-header<Xx.h> there is a C++-
header <cX>

Institute of Computer Graphics and Algorithms 42

Miscellaneous — Including Files

(11

used for header files from the current project

¢ search starts in the local directory, then searches
the include directories (as with <>)

#include "in current _dir.hpp"

Institute of Computer Graphics and Algorithms 43

Methods C++ silently writes

= An empty class

class Empty {

}s

Institute of Computer Graphics and Algorithms 44

Methods C++ silently writes

m Is actually this:

class Empty {

public:
Empty() { ... } // default constructor
Empty(const Empty& rhs) { ... } // copy constructor
~Empty() { ... } // default destructor

//(non-virtual except a case class has virtual dtor

// copy assignment operator
Empty& operator=(const Empty& rhs) { ... }

}s

Institute of Computer Graphics and Algorithms 45

Methods C++ silently writes

m Default Constructor
¢ Takes no arguments

¢ Is only provided if no other Constructors are
declared by you

m Default Destructor
¢ Is not virtual

m Default Copy Constructor and Copy
Assignment Operator

¢ Simply copy all data members over to the
target object

Institute of Computer Graphics and Algorithms 46

Copy Constructor vs. Copy Assignment Op.

m They are called in two different situations:

DeepPerson somePerson;
//This will call DeepPerson: :DeepPerson(const DeepPerson& rhs)

//Equivalent to DeepPerson copyConstructed(somePerson);
DeepPerson copyConstructed = somePerson;

DeepPerson copyAssigned;

//This will call
// DeepPerson: :DeepPerson& operator=(const DeepPerson& rhs);

copyAssigned = somePerson;

Institute of Computer Graphics and Algorithms 47

Example 1: ShallowPerson.h

class ShallowPerson {

public:
ShallowPerson(const string& name);
~ShallowPerson();

const string& getName() const;

void setName(const string& name);

//ShallowPerson is OWNER of child’s data

ShallowPerson * createChildWithName(const string&
name);

const ShallowPerson * getChild() const;

virtual string saySomething() const;
private:

string _name;
ShallowPerson* child;

Institute of Computer Graphics and Algorithms 48

Example 1 : ShallowPerson.cpp

ShallowPerson: :ShallowPerson(const string& name)
: _name(name), _child(NULL)

{

}

ShallowPerson: :~ShallowPerson() {
if (_child != NULL)

delete child;
}

ShallowPerson* ShallowPerson: :createChildWithName(const string& name)
{
if (_child == NULL) {
_child = new ShallowPerson(name);
return _child;
} else {
//Do appropriate error Logging in here
return NULL;

49

Example1: ShallowPerson.cpp cont'd

string ShallowPerson: :saySomething() const {
std::ostringstream oss;

0SS << _name << " (@ " << this << ") who has";

if (_child !'= NULL) {
0ss << " a child ";

0ss << _child->saySomething();
} else {

0ss << " no child.";

}

return oss.str();

Institute of Computer Graphics and Algorithms 50

Example 1 : SilentlyWrittenStuff.cpp

= Consider the following:

ShallowPerson john("John");

//John is going to have a kRid "Johnny"
//Note that he is supposed to be "the owner" of the child
//(in terms of memory)

//Johnny in turn, 1s going to have another kid "Johnny-Lee"
ShallowPerson* johnny = john.createChildWithName("Johnny");
johnny->createChildWithName("Johnny-Lee");

//Prints:

//John (@ ox7fff5fbffla®) who has a child

// Johnny (@ 6x100100220) who has a child

// Johnny-Lee (@ 6x100100270) who has no child.

cout << john.saySomething() << endl;

Institute of Computer Graphics and Algorithms 51

Example 1 : SilentlyWrittenStuff.cpp cont'd

m This Is going to cause troubles:

//Now what happens if we copy John?
ShallowPerson johnCopy = john;

//Prints:

//John-Clone (@ Ox7fff5fbff180) who has a child

// Johnny (@ 6x100100220) who has a child

// Johnny-Lee (@ 6x100100270) who has no child.

cout << johnCopy.saySomething() << endl;

= When johnCopy and john gets destroyed
this code will crash

¢ Why?
¢ - Double Deletion In shalilowperson: :~ShallowPerson()

Institute of Computer Graphics and Algorithms 52 #

Example 1 : ShallowPerson cloned hierarchy

Johnny-Lee

Double Deletion!

\

Institute of Computer Graphics and Algorithms 53

Example 1 : DeepPerson.h

m Lets do it correctly and control the copying

process more tightly by adding the appropriate
declarations

class DeepPerson {
public:

... //Constructors/Destructors omitted for brevity

//Copy Constructor

DeepPerson(const DeepPerson& rhs);
//Copy Assignment Operator

DeepPerson& operator=(const DeepPerson& rhs);

... //other methods and members same as i1n ShallowPerson.h

s

Institute of Computer Graphics and Algorithms 54 #

Example 1 : DeepPerson.cpp

DeepPerson: :DeepPerson(const DeepPerson& rhs)
: _name(rhs.getName()+"-clone"), child(NULL)
{

if (rhs.getChild() != NULL) {
_child = new DeepPerson(*rhs.getChild());
}

}

DeepPerson& DeepPerson: :operator=(const DeepPerson& rhs) {

if (this == &rhs) {
return (*this);
1} else {

_name = rhs.getName();
//Same as in Copy Constructor
if (rhs.getChild() != NULL) {

_child = new DeepPerson(*rhs.getChild());
}

return (*this);

55

Example 1 : SilentlyWrittenStuff.cpp

= Now DeepPerson creates a deep (vs. shallow)
copy of its child and we won't run into troubles:

DeepPerson johnCopy(john);

//Prints:

//John-clone (@ Ox7fff5fbff180) who has a child

// Johnny-clone (@ 6x1001002e6) who has a child

// Johnny-Lee-clone (@ 6x100100350) who has no child.

cout << johnCopy.saySomething() << endl;

Institute of Computer Graphics and Algorithms 56

Example 1 : DeepPerson cloned hierarchy

Johnny-Lee

Johnny-Lee-

Clone Johnny-Clone John-Clone

Institute of Computer Graphics and Algorithms 57

Copy Constructor vs. Copy Assignment Op.

m They are called in two different situations:

DeepPerson somePerson;
//This will call DeepPerson::DeepPerson(const DeepPerson& rhs)

DeepPerson copyConstructed = somePerson;

DeepPerson copyAssigned;
//This will call
// DeepPerson::DeepPerson& operator=_(const DeepPerson& rhs);

copyAssigned = somePerson;

m Therefore you can’'t implement one in terms of
the other

¢ But you can provide e.g. a private init method
to share code ,
#

Institute of Computer Graphics and Algorithms 58

Example 1 : AmnesicStudent.cpp

» What about inheritance?

AmnesicStudent: :AmnesicStudent(const AmnesicStudent& rhs)
: _matNumber(rhs.getMatNumber())
{

}

AmnesicStudent& AmnesicStudent::operator=(const AmnesicStudent& rhs)

{
if (this == &rhs)
return (*this);

_matNumber = rhs.getMatNumber();

//Who 1s going to copy the members of our base class
DeepPerson??

return (*this);

}

Institute of Computer Graphics and Algorithms 59

Example 1 : SilentlyWrittenStuff.cpp

m Lets see how that works out:

AmnesicStudent aMike("Mike", 123456);

//Prints: "I am Mike, Student no. 123456".
cout << aMike.saySomething() << endl;

//Copy Mike to Mike-Clone
AmnesicStudent aMikeClone(aMike);

//Prints: "I am default-name, Student no. 123456".
cout << aMikeClone.saySomething() << endl;

Institute of Computer Graphics and Algorithms 60

Example 1 : How to fix AmnesicStudent.cpp

HealthyStudent: :HealthyStudent(const HealthyStudent& rhs) :
DeepPerson(rhs), _matNumber(rhs.getMatNumber())

{
}

HealthyStudent& HealthyStudent: :operator=(const HealthyStudent& rhs)

{
if (this == &rhs)
return (*this);

//We also have to call the copy operator of our base class
//or else the name won't get copied properly
DeepPerson: :operator=(rhs);

_matNumber = rhs.getMatNumber();

return (*this);

Institute of Computer Graphics and Algorithms 61

Copy Constructor and Copy Assignment Op.

m Provide own implementation

¢ If simply copying/assigning data members Is
not sufficient

¢ Declare private to prevent unintended copying

¢ Default implementations are actually not too
pad, but be aware of them!

= If you DO provide own implementation
¢ Don'’t forget to modify after adding members

¢ Don't forget to call base classes’ Copy
Constructor and CAOp (see Example code)

Institute of Computer Graphics and Algorithms 62 ﬁ

Pure Virtual Methods in C++

m Similar to abstract classes in Java

= Use them to declare interfaces you require
subclasses to implement

class Talkativelnterface {

public:

~TalkativeInterface() {}
virtual string saySomething() const = 0;

¥
class Person : public TalkativeInterface {

public:
... //everything else omitted
//Person has to implement this or 1t won’t
compile
virtual string saySomething() const;

63

Exceptions

void someFunctionA() {
//We can throw anything
throw string("Flying message.");

try {

someFunctionA();

//Always catch by reference
} catch (const string& s) {

cout << "Caught a string " << s << endl;

}

Institute of Computer Graphics and Algorithms 64

Exceptions

= When using exceptions you have to code carefully
¢ Thereis no finally Iin C++!!

void someFunctionC() {
string* s = new string("SOME");
//0ops, this will throw out of range
//AND create a memory Lleak...
char c = s->at(4);

//Could use shared ptr in here!

delete s;

Institute of Computer Graphics and Algorithms 65

Exceptions

m Throw lists allows the runtime to restrict the
thrown objects to certain types:

void someFunctionD() throw (std::out of range) {
throw string("Flying message");

}

m BUT:
¢ The compiler won't complain

¢ During runtime above code will call
unexpected()

= Which is really bad!

Institute of Computer Graphics and Algorithms 66

Exceptions

m Use and reuse classes of #include <stdexcept>

¢ You can catch exceptions polymorphically:

void someFunctionD() throw (std::out _of range) {
string s("SOME");
s.at(4);

try {

someFunctionD();

//out_of range 1s subclass of exception
} catch (const std::logic _error& e) {
cout << "Got an exception: " << e.what() << endl;

}

Institute of Computer Graphics and Algorithms 67

Exceptions - Summary

= Very different from using exceptions in Java
You can throw anything

You don’t have to catch

Use throw lists to restrict thrown types

Be aware of stack-unwinding after throw
Reuse standard exceptions

Keep the following in mind:
¢ Constructor may throw
¢ Destructor must not throw
¢ Memory management is getting trickier
¢ There are performance implications

Institute of Computer Graphics and Algorithms 68

Casting

m A perfect OO C++ world rarely needs casting

m Very often casting tries to fix bad design

m 4 C++ style casts:
¢ static_cast<T >()
¢ dynamic_cast<T >()
¢ reinterpret_cast<T >()
¢ const_cast<T >()

= And the C-style cast
¢ (T)
¢ ...which should be completely avoided

Institute of Computer Graphics and Algorithms 69

static_cast

m This is why static_cast Is better than C-style
cast:

int a = 7;

unsigned int b = static_cast<unsigned int >(a); // ok
double* pl = (double*) &a;// ok (but a 1s not a double)
double* p2 = static_cast<double*>(&a); // error

m See htip:/iwvww2.research.att.com/~bs/bs faq2.html#static-cast

Institute of Computer Graphics and Algorithms 70

dynamic_ cast

m Uses Runtime Type Information (RTTI) for
polymorphic objects
m Useful for downcasting scenarios

void checkType(DeepPerson* p) {

//Is this a healthy student?
HealthyStudent* healthyStudentPtr =
dynamic_cast<HealthyStudent* >(p);

if (healthyStudentPtr != NULL) {
cout << p->getName() << " is HealthyStudent." << endl;

}
}

= Performance cost due to accessing RTTI

Institute of Computer Graphics and Algorithms 71

Shared Pointer

= Implements a very useful paradigm:

¢ Resource Acquisition Is Initialization (RAII)
¢ Object takes ownership

#include <trl/memory>

typedef shared ptr<string > StringRef;

//sRef automatically deletes the string when lLeaving scope
StringRef sRef(new string("String on heap."));

//Use StringRef just Like a pointer to a string (string*)

cout << "The string '" << *sRef
<« "' is " << sRef-»>size() << " characters long" << endl;

Institute of Computer Graphics and Algorithms 72

Shared Pointer

= They play well together with exceptions
m This won't cause memory leaks:

void someFunctionA() {

//SRef 1s destroyed during unwinding of the

stack
//Therefore the string on heap memory
//1s properly cleaned up
StringRef sRef(new string("My String"));
throw std::exception();

}

Institute of Computer Graphics and Algorithms 73

Shared Pointer

m They also work polymorphically
= And they can be stored in a STL containers

typedef shared _ptr<Person > PersonRef;
typedef shared ptr<Student > StudentRef;

PersonRef pRef(new Student("Mike", 123456));

vector<PersonRef > people;
people.push_back(pRef);

//reuse objects

//This won't create memory leaks, as the original
shared ptr is still in the vector!

pRef = PersonRef(new Person("John"));
people.push_back(pRef);

Institute of Computer Graphics and Algorithms 74

Shared Pointer

L1

m Aka “smart pointer”, “auto pointer”

m Take ownership of data

®= You can use them like normal pointers

» Enable much cleaner memory management
= Work well together with STL and exceptions

= Will be part of next C++ standard
m Also check out boost lib’'s implementation:

http://www.boost.org/doc/libs/1 42 0/libs/smart ptr/smart ptr.htm

Institute of Computer Graphics and Algorithms 75

http://www.boost.org/doc/libs/1_42_0/libs/smart_ptr/smart_ptr.htm

The End

= Thanks for your attention!

Institute of Computer Graphics and Algorithms 76

