
C++ Introductory Tutorial

Part I : Basic Language Features

Institute of Computer Graphics and Algorithms

Vienna University of Technology

Outline

Two part tutorial:

Today:

C++ Basics

Next week:

STL

Advanced Topics

C++ recipes

How to do program common tasks

properly

Your Questions

1Institute of Computer Graphics and Algorithms

Overview

Stages of the C++ build process

Basic syntax

Declaration vs. Definition (Headers)

Data types

Pointer & References

Important C++ operators

Global Scope

Const correctness

Passing variables

Stack & Heap Memory

Classes & Polymorphism
2Institute of Computer Graphics and Algorithms

C Plus Plus

Developed by Bjarne Stroustrup

1979 Bell Labs

Originally named C with Classes

Powerful type-safe language

Used in

Games

Embedded Systems

High-performance application

Drivers, Kernels,...

Institute of Computer Graphics and Algorithms 3

C Plus Plus

C++ is a federation of 4 languages

C

You can still do any low level C stuff (comes in
handy when using C APIs like OpenGL)

Object oriented C++

Classes, Polymorphism, OOP

Template C++

Generic programming, template
metaprogramming

Standard Template Library (STL)

A set of standard algorithms and data
structures for C++

Institute of Computer Graphics and Algorithms 4

Header- & Source Files

Common mechanism for organizing code

Header files store declarations and

interfaces

typical file extensions: *.hpp, *.hh, *.h

Source files store definitions and

implementations

typical file extensions: *.cpp, *.cc

Implementation details not necessary during

compilation as long as interfaces are known

55Institute of Computer Graphics and Algorithms

Stages of the C++ build process

Preprocessor replaces text in files

no scope rules whatsoever taken into account

Note: human and compiler see different things

Compiler translates source files to object files

Linker merges object files to an executable

file

66Institute of Computer Graphics and Algorithms

Header- & Source Files

77Institute of Computer Graphics and Algorithms

Static and Dynamic Libraries

Object files contain all compiled source code

Static libraries are essentially object files

when linking to a static library, all code that is

actually used, is merged into the executable

Dynamic libraries consist of 2 files

*.lib files – contain declarations only and no

code; linker knows how much space e.g. a

function will need on the stack etc.

*.dll files – contain the needed code

88Institute of Computer Graphics and Algorithms

DLLs

DLLs are not merged into the executable

but executable can call code stored in DLL

i.e. DLL must reside in the same directory as the

executable, or a system directory for DLLs!

As soon as code from DLL is needed, the DLL

is dynamically (“at runtime“) loaded into

memory

system-wide, if the same DLL is used from many

processes, its content is loaded into memory only

once and can be shared

99Institute of Computer Graphics and Algorithms

LIBs Conclusion

Include a library„s header file(s) so that
COMPILER knows library variables, function
declarations etc.

e.g. compiler can perform type checking

Link to library [*.lib file(s)] so that LINKER can
lay out code and calculate jump addresses etc

for a dynamic link library don„t forget to make
its code accessible at runtime, i.e. ship *.DLL
file(s) with the executable

...it„s a little different on other platforms than
Windows

1010Institute of Computer Graphics and Algorithms

Typical Compiler Errors

Syntax Error

misspelled keyword etc.

Type Error

Forgot to include a file?

Wrong include path?

1111Institute of Computer Graphics and Algorithms

Typical Linker Errors

Unresolved reference

to variable, function, etc.

Forgot to link to library files?

Wrong library path?

1212Institute of Computer Graphics and Algorithms

A Simple Example

cpp_intro.hpp:

#ifndef _CPP_INTRO_HPP_
#define _CPP_INTRO_HPP_

#include <iostream> // for std::cout, std::endl

// usually we'd only declare functions in header files, but
// this way we can see better, what the preprocessor does 
void say_hello(void) {
// “cout” prints to the console
std::cout << "Hello CG2LU!" << std::endl;

}

#endif //#ifndef _CPP_INTRO_HPP_

13Institute of Computer Graphics and Algorithms

A Simple Example

cpp_intro.cpp:

#include "cpp_intro.hpp"

int main(int argc, char *argv[]) {
say_hello();
return EXIT_SUCCESS;

}

14Institute of Computer Graphics and Algorithms

A Simple Example

cpp_intro.cpp after preprocessor-pass:

/*
*
* --- MANY LINES OF CODE ----
* from iostream (a system header file)
*
*/

void say_hello(void) {
std::cout << "Hello CG2LU!" << std::endl;

}

int main(int argc, char *argv[]) {
say_hello();
return 0;

}

15Institute of Computer Graphics and Algorithms

Header Guards

Large programs tend to include the same

header file many times

E.g. it is very likely that many source files

have a

#include <string>

Each time a header file is included in a file, its

content is copied into that file

i.e. we face the problem of multiple

declarations for the same thing

compiler doesn„t like multiple declarations

16Institute of Computer Graphics and Algorithms

Header Guards

Small multiple inclusion scenario:

B.hpp includes A.hpp

C.cpp includes A.hpp and B.hpp (which

already includes A.hpp itself!)

17Institute of Computer Graphics and Algorithms

B A

C

Header Guards

The preprocessor comes to the rescue

test, if certain symbol is defined

if not, define it and include the file„s content

if yes, just ignore the whole file

#ifndef SOME_TOKEN
#define SOME_TOKEN

//only included ONCE

#endif //#ifndef SOME_TOKEN

18Institute of Computer Graphics and Algorithms

Primitive Data Types

Basically very similar to Java datatypes

void : „no (specific) datatype“ (e.g. generic

pointers, functions returning no value /

accepting no parameters)

char : (8 bit) character

wchar_t : wide character (e.g. UNICODE)

bool : boolean

short, int, long : integers

float, double, long double : floating

points

19Institute of Computer Graphics and Algorithms

Primitive Data Types

Some differences to Java:

unsigned datatypes

boolean (Java) => bool (C++)

null (Java) => NULL (C++)

no class objects representing primitive types

20Institute of Computer Graphics and Algorithms

Primitive Data Types

Determining a datatype„s size in byte

e.g. size of an integer

check, if code executes in 32 bit (4 bytes) or

64 bit (8 bytes) environment

sizeof(int)

sizeof(void *)

21Institute of Computer Graphics and Algorithms

Pointers and References

Pointers
Store the address of an object instead of its
value/content

Need not be initialized

We can make a pointer refer to other addresses
many times

pointer arithmetics

the data type determines the step-size in bytes

 may point to invalid address !!!

When used, we need a “*“ to actually read/write
the location they point to

The address the pointer itself is stored in can be
determined

22Institute of Computer Graphics and Algorithms

Pointers and References

References are basically pointers, but

Must be initialized, i.e. cannot be NULL

Once initialized, it is impossible to make a
reference refer to another variable (i.e.
address)

 no pointer arithmetics

There is no “official“ way to determine the
address of the memory cell, the reference
itself is stored in

When used, look just like “normal“ variables
syntactically

23Institute of Computer Graphics and Algorithms

Pointers and References

int i=123, j=456;

// use “*” for pointer declaration
int *ptr_to_i = NULL;
int *ptr2_to_i = &i; // assign i's address to pointer

// pointers may be uninitialized, but that’s bad practice
int *ptr3_to_i;

// use “&” for reference declaration
// NOTE: a reference MUST be initialized!
int &ref_to_i = i;

ptr_to_i = &i; // make “ptr_to_i” point to “i”

ptr3_to_i = ptr_to_i; // note that now we don't need the "&“

// “ptr_to_i” itself is stored at:
cout << “ptr_to_i’s address ” << &ptr_to_i << endl;

24Institute of Computer Graphics and Algorithms

Pointers and References

0x0012FF74 i

0x0012FF60

0x0012FF70

0x0012FF6C

0x0012FF68

0x0012FF64

4 Bytes

...

...

j

ptr_to_i 0x0012FF74

456

123

0x0012FF74

0x0012FF74

0x0012FF74

ptr2_to_i

ptr3_to_i

“ref_to_i“

memory

address

25Institute of Computer Graphics and Algorithms

User Defined Data Types

Enumerations (enum)

Arrays

Structures (struct)

Classes (class)

26Institute of Computer Graphics and Algorithms

User Defined Data Types - Enumerations

Datatype, where accepted values/elements are
enumerated explicitly

enum typename {element1, element2, ...};

Similar to a (multi-)set

Internally elements represented by integer constants

Uninitialized elements are assigned the
predecessor„s value +1

If the first element is not initialized, it is implicitly set
to 0

It is possible to specify the associated integer
constant to each element explicitly

Two elements may be set to the same constant!

27Institute of Computer Graphics and Algorithms

User Defined Data Types - Enumerations

enum animation_state { Idle,
Walking=3,
Running=3,
Attacking,
Dead };

animation_state enemy_state = Idle;

// = 0
cout << "Idle was assigned " << Idle << endl;

// = 4
cout << "Attacking was assigned " << Attacking << endl;

// ... enemy changes state ...

if(enemy_state == Dead) { /* spawn new emeny */ }

28Institute of Computer Graphics and Algorithms

User Defined Data Types - Arrays

Datatype that stores many elements of the same

type

Arrays don‘t check if the supplied index is valid

Arrays don‘t store their size (element_cnt)

Array name is also pointer to first element

char c_arr[] = {'h', 'i', '\0'};
char *str = "hi";

cout << "c_arr = " << c_arr << endl;
cout << "str = " << str << endl;

element_type array_name[element_cnt];

29Institute of Computer Graphics and Algorithms

User Defined Data Types - Arrays

unsigned int idx;
const size_t arr_size=4;

float f_arr[arr_size];

// f_arr is the same as &(f_arr[0]), i.e.
// f_arr points to the array’s first element

f_arr[0] = 100.0f;
f_arr[1] = 101.0f;

// pointer arithmetics; step-size in byte = sizeof(float)
// let’s assume that sizeof(float) equals 4
// f_arr+2 increments the address f_arr by 8 bytes, which is
// exactly the size of 2 float array elements
*(f_arr+2) = 102.0f;

f_arr[3] = *(f_arr+1) + 2.0f; // = 103.0f

30Institute of Computer Graphics and Algorithms

User Defined Data Types - Structures

Datatype that stores many elements of

possibly different types

In C++ same as class with public elements

only

struct struct_name {type1 el1; type2 el2; ...};

struct coord {
float x, y;

};

coord origin;

origin.x = 0.0f;
origin.y = 0.0f;

31Institute of Computer Graphics and Algorithms

Operators

Indirection (dereference)

*var

Address-of (reference)

&var

Member

complex_var.member

Member by pointer

complex_var->member

Scope resolution

scope_name::element

And many more...

32Institute of Computer Graphics and Algorithms

Operators

int var = 3;

int *ptr = NULL;

// Address-of (reference)
ptr = &var;
// => make "ptr" point to "var"

// Indirection (dereference)
int tmp = *ptr;
// => access var’s value through the
// pointer “ptr”, which points to it

33Institute of Computer Graphics and Algorithms

Operators

struct coord2D {
float x, y;

};

coord2D someCoord = {3.0f, -4.0f};//declaration and initialization
coord2D *someCoord_ptr = &someCoord;

// Member
cout << "someCoord.y = " << someCoord.y << endl;

// Member by pointer
cout << "someCoord_ptr->y = " << someCoord_ptr->y << endl;
cout << "(*someCoord_ptr).y = " << (*someCoord_ptr).y << endl;

34Institute of Computer Graphics and Algorithms

Operators

int var = 1; // global (file) scope

namespace scope_1 {
int var = 2; // specific namespace

} // no ";" necessary

void foo(void) {
int var = 3; // (function-) local scope

// Scope resolution
// local scope => prints "3"
cout << "var = " << var << endl;
// global scope => prints "1"
cout << "::var = " << ::var << endl;
// named scope => prints "2"
cout << "scope_1::var = " << scope_1::var << endl;

}

35Institute of Computer Graphics and Algorithms

Gobal Scope

Unlike Java, C++ allows to define...

Global functions

Global variables

e.g. main – method

Avoid using global variables

Stick to OO design

36Institute of Computer Graphics and Algorithms

Gobal Scope

Beware, Java-terminology and C++-

terminology for “global scope” differ

Global scope or global namespace scope is

outermost namespace scope of a program, in

which

objects

functions

types and

templates can be defined

37Institute of Computer Graphics and Algorithms

Gobal Scope

A name has global namespace scope, if

identifier's declaration appears outside of all

blocks

namespaces, and

classes

38Institute of Computer Graphics and Algorithms

Global Scope

39

int g_GlobalFoo = 0;

int multiply(int one, int two) {
return one*two;

}

void printGlobalFoo() {
std::cout << "Global Foo: " << g_GlobalFoo << std::endl;

}

int main(int argc, char* argv[]) {

int foo = 2;
int baz = 4;

g_GlobalFoo = multiply(foo, baz);

//will print "8"
printGlobalFoo();

return EXIT_SUCCESS;
}

Const Correctness

40Institute of Computer Graphics and Algorithms

//A non-mutable string
const string fooA("Can't be modified.");

//A pointer to a non-mutable string
const string * fooPtrA = &fooA;

//A non-mutable pointer to a non-mutable string
const string * const fooPtrB = &fooA;

//Same as fooPtrB
string const * const fooPtrC = &fooA;

//A reference to a non-mutable string
const string& fooRef = fooA;

Const Correctness

const prevents variables/objects from being

modified

Use it to…

…let the compiler tell you when you try to

modify something that you shouldn‟t

…let the compiler optimize your code under

the hood

…have other people understand your code

better

41Institute of Computer Graphics and Algorithms

Passing Variables

42Institute of Computer Graphics and Algorithms

//pass by value
void someFunctionA(string baz) {

//baz holds a copy of foo
//This assignment has NO effect on foo
baz = "Modified by someFunctionA.";

}

...
string foo("Original Value");

someFunctionA(foo);
//Output: "Original Value"
cout << foo << std::endl;
...

Passing Variables

43Institute of Computer Graphics and Algorithms

//pass by reference
void someFunctionB(string& baz) {

//function has read/write access to foo
baz = "Modified by someFunctionB.";

}

...

someFunctionB(foo);
//Output: "Modified by someFunctionB"
cout << foo << std::endl;
...

Passing Variables

44Institute of Computer Graphics and Algorithms

//pass by ref-to-const
void someFunctionF(const string& baz) {

//function has read-only access to baz
//NOTE: baz CANNOT be NULL
cout << "someFunctionD reads: " << baz << endl;

//This wouldn't compile:
//baz = "some other value";

}

...
string foo("Original Value");
//foo won’t get copied
someFunctionF(foo);
...

Passing Variables

45Institute of Computer Graphics and Algorithms

//pass by pointer-to-const
void someFunctionD(const string* bazPtr) {

//function has read-only access to foo
//by dereferencing bazPtr, !! -> bazPtr can be NULL
if (bazPtr != NULL)

cout << "someFunctionC reads: " << *bazPtr << endl;

//This wouldn't compile:
//(*bazPtr) = "Modified by someFunctionC";

//Again, changing bazPtr, which is
//a local variable of type const string*
//has no effect on foo
bazPtr = NULL;

}
...
string foo("Original Value");
someFunctionD(&foo);
...

Passing Variables

Use pass-by-value for small integral types

Use pass-by-ref for modifying (multiple)

objects

Use pass-by-const-ref for passing read-only

objects

Pass pointers if you want to check for NULL

But then check for NULL-ptr, really!

46Institute of Computer Graphics and Algorithms

//A float array on the heap (size can be determined at runtime)
float* heapFloatArray = new float[dynamicArraySize];
... //initialize the array!

delete[] heapFloatArray; //-> don't forget '[]' for arrays!

//A float array on the stack (size known at compile time)
float stackFloatArray[4];
... //initialize the array!

//A float on heap memory
float* heapFloat = new float(1.0f);

//Be a good citizen and cleanup!
delete heapFloat;

Stack and Heap Memory

47Institute of Computer Graphics and Algorithms

...
//A float on stack memory
float stackFloat = 1.0f;

...

Stack and Heap Memory

Stack Memory

Object size known at compile-time

Memory of the current frame

Objects are destroyed/cleaned up when

leaving current frame

Very fast

Stack Memory is limited, not suited for big

arrays ( use heap memory)

48Institute of Computer Graphics and Algorithms

Stack and Heap Memory

Heap Memory

Object size can be determined during run-time

new/delete to (de)allocate single objects

new[]/delete[] to (de)allocate arrays

Initialize arrays right after allocation

Prefer new/delete over C malloc/dealloc for

type safety

Write cleanup code RIGHT AFTER you wrote

allocation code, really!

Consider using smart pointers (next session)

49Institute of Computer Graphics and Algorithms

Memory Leaks

Each new needs its own delete!

50Institute of Computer Graphics and Algorithms

//Create something on the heap
float* heapFloat = new float(6.0f);

//This creates a memory leak!!!
heapFloat = new float(7.0f);

//We are only cleaning up the last allocation
delete heapFloat;

Common Memory Pitfalls

Memory Leaks

Use tools to check for memory leaks

valgrind, gdb, Visual Studio, …

 See thread in forum for instructions

Double Deletion

Accessing deallocated resources

Deletion of NULL pointers

Underallocating arrays (out of bounds access)

51Institute of Computer Graphics and Algorithms

Class Declaration

52Institute of Computer Graphics and Algorithms

class Person {

public:

Person(const string& name); //Constructor
~Person(); //Destructor

const string& getName() const; //Getter
void setName(const std::string& name); //Setter

//Returns a string with some message
string saySomething() const;

private:

string _name;

}; //<- don't forget the ";" !!!

Class Declaration

Declare classes in header files

If you have cyclic header dependencies (A.h

requires B.h and vice-versa)

Rethink your design

Use forward declarations in header and defer

#include to implementation

Use #include as late as possible

53Institute of Computer Graphics and Algorithms

Constructor

54

Use initializer list to initialize members

Required for const members or reference

members

Initializer list has to init the members in the

same order they have been declared

Once the constructor body has finished the

object is alive  the destructor is guaranteed

to be called on object deallocation

Institute of Computer Graphics and Algorithms

Person::Person(const string& name) : _name(name) {
//good place to allocate stuff (new)

}

Multiple constructors:

Do not implement one in terms of the other:

Correct:

Person::Person(const string& name) : _name(name) {}

Person::Person() {
//This code creates only a temporary
Person("default-name");

}

Constructor cont‟d

55Institute of Computer Graphics and Algorithms

Person::Person() : _name("default-name") {
//Default Constructor

}

Destructor

If (and only if) object is alive, destructor is

guaranteed to be called

Deallocate members in here

56Institute of Computer Graphics and Algorithms

Person::~Person() {
//deallocate members (delete,...)

}

Const methods

Prevents the method from modifying class-

members

Use const methods to complete const

correctness, or this:

…wouldn‟t compile
57Institute of Computer Graphics and Algorithms

class Person {
public:

...
const string& getName() const;
...

};

void printName(const Person& p) {
cout << p.getName() << endl;

}

Class Inheritance

Use public inheritance to model “is-a” relations

Student is a Person

Inherited class has access to public and

protected members and methods

There are also protected and private

inheritance techniques

... these are more exotic, don‟t bother

58Institute of Computer Graphics and Algorithms

class Student : public Person {
...

};

Class Inheritance - virtual

59

class Person {

public:
Person(const string& name);
virtual ~Person();
...
virtual string saySomething() const;
...

};

class Student : public Person {

public:
Student(const std::string& name, long matNumber);
virtual ~Student();

long getMatNumber() const;

virtual string saySomething() const;

private:
const long _matNumber;

};

Class Inheritance - VTable

Declaring a method virtual

Allows subclasses to override methods (vs.

hiding methods)

Without declaring saySomething as virtual,

the code would have called

Person::saySomething instead

60Institute of Computer Graphics and Algorithms

Student student("Jo", 1234567);
Person& personRef = student;
//This will call Student::saySomething()
cout << personRef.saySomething() << endl;

Class Inheritance - VTable

Watch out:

You have to use pointers or references for

polymorphism:

Correct:

61

Student s("Markus", 1234567);
//This will discard any relation to Student
Person p = s;

Institute of Computer Graphics and Algorithms

Student s("Markus", 1234567);
Person& p = s;

Class Inheritance – Constructor Chain

62

Use initializer list to initialize base class

There is no super() as it is in Java

Order of creation (apply recursively):

1. Base class, if any

2. Data members in the order they have been

declared (non-static)

3. Constructor body is executed

Institute of Computer Graphics and Algorithms

Student::Student(const std::string& name, long matNumber)
: Person(name), _matNumber(matNumber)

{
}

Class Inheritance – Destructor Chain

Destructor Chain is implicit

You don‟t have to call base classes‟

destructor explicitly

BUT you have to declare them virtual, or...

... Student::~Student() won‟t ever be executed

63Institute of Computer Graphics and Algorithms

Person* somePerson = new Student("Mic", 2345678);
delete somePerson;

Class Inheritance - virtual

64

class Person {

public:
Person(const string& name);
virtual ~Person();
...
virtual string saySomething() const;
...

};

class Student : public Person {

public:
Student(const std::string& name, long matNumber);
virtual ~Student();

long getMatNumber() const;

virtual string saySomething() const;

private:
const long _matNumber;

};

Class Inheritance – Accessing base class

To access base class methods in overriden

methods:

65Institute of Computer Graphics and Algorithms

string Student::saySomething() const {

string result = Person::saySomething() \
+ " and I am a student (nr.: " \
+ LongToString(_matNumber) + ").";

return result;
}

Literature

Thinking in C++ (B. Eckel)

Introductory, free

Available online:
http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html

Accelerated Cpp (A. Koenig)

Introductory
http://www.acceleratedcpp.com/

Effective C++ (S. Meyers)

Essential literature for advanced C++

Institute of Computer Graphics and Algorithms 66

http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html
http://www.acceleratedcpp.com/

That‟s it, folks!

Go home, compile code...

Code listing are online as complete examples

Next session:

More C++ features

Standard template library

A few How To‟s

Your questions  forum!

Questions?

67Institute of Computer Graphics and Algorithms

