C++ Introductory Tutorial

Part | : Basic Language Features

Institute of Computer Graphics and Algorithms

Vienna University of Technology

Outline

= Two part tutorial:
¢ Today:
= C++ Basics
¢ Next week:
mSTL
= Advanced Topics
m C++ recipes

¢ How to do program common tasks
properly
= Your Questions

Institute of Computer Graphics and Algorithms 1

Overview

Stages of the C++ build process
Basic syntax

Declaration vs. Definition (Headers)
Data types

Pointer & References

mportant C++ operators

Global Scope

Const correctness

Passing variables

Stack & Heap Memory

Classes & Polymorphism

Institute of Computer Graphics and Algorithms 2

C Plus Plus

m Developed by Bjarne Stroustrup
¢ 1979 Bell Labs
¢ Originally named C with Classes

m Powerful type-safe language

m Used in

¢ Games

¢ Embedded Systems

¢ High-performance application

¢ Drivers, Kernels,...

Institute of Computer Graphics and Algorithms 3

C Plus Plus

m C++ Is a federation of 4 languages

¢ C

= You can still do any low level C stuff (comes in
handy when using C APIs like OpenGL)

¢ Object oriented C++
= Classes, Polymorphism, OOP
¢ Template C++

= Generic programming, template
metaprogramming

¢ Standard Template Library (STL)

= A set of standard algorithms and data
structures for C++

Institute of Computer Graphics and Algorithms 4

Header- & Source Files

» Common mechanism for organizing code

m Header files store declarations and
Interfaces
= typical file extensions: *.hpp, *.hh, *.h
m Source files store definitions and
Implementations
= typical file extensions: *.cpp, *.cc

= Implementation details not necessary during
compilation as long as interfaces are known

Institute of Computer Graphics and Algorithms 5

Stages of the C++ build process

m Preprocessor replaces text in files
¢ no scope rules whatsoever taken into account
¢ Note: human and compiler see different things
m Compiler translates source files to object files

m Linker merges object files to an executable
file

Institute of Computer Graphics and Algorithms 6

Bl _____ E
[Library |

V)
Q@
=

@

O

S

>

O
U)
o

.

@
o

G

D
I

Institute of Computer Graphics and Algorithms

Static and Dynamic Libraries

m Object files contain all compiled source code

m Static libraries are essentially object files

¢ when linking to a static library, all code that is
actually used, is merged into the executable

= Dynamic libraries consist of 2 files

¢ * lib files — contain declarations only and no
code; linker knows how much space e.g. a
function will need on the stack etc.

¢ *.dll files — contain the needed code

Institute of Computer Graphics and Algorithms 8

DLLs

m DLLs are not merged into the executable
¢ but executable can call code stored in DLL
¢ I.e. DLL must reside in the same directory as the
executable, or a system directory for DLLS!
= As soon as code from DLL Is needed, the DLL
Is dynamically (“at runtime®) loaded into
memory

¢ system-wide, if the same DLL is used from many
processes, its content is loaded into memory only
once and can be shared

Institute of Computer Graphics and Algorithms 9 #

LIBs Conclusion

® Include a library's header file(s) so that
COMPILER knows library variables, function
declarations etc.

¢ e.g. compiler can perform type checking
m Link to library [*.lib file(s)] so that LINKER can
lay out code and calculate jump addresses etc

¢ for a dynamic link library don‘t forget to make
Its code accessible at runtime, I.e. ship *.DLL
file(s) with the executable

¢ ...it's a little different on other platforms than
Windows

Institute of Computer Graphics and Algorithms 10 ﬁ

Typical Compiler Errors

m Syntax Error
¢ misspelled keyword etc.

m Type Error
m Forgot to include a file?
= Wrong include path?

Institute of Computer Graphics and Algorithms 11

Typical Linker Errors

m Unresolved reference
¢ to variable, function, etc.

m Forgot to link to library files?
= Wrong library path?

Institute of Computer Graphics and Algorithms 12

A Simple Example

cpp_intro.hpp:

#ifndef _CPP_INTRO HPP_
#define CPP_INTRO HPP_

#include <iostream> // for std::cout, std::endl

// usually we'd only declare functions in header files, but
// this way we can see better, what the preprocessor does ©
void say hello(void) {

// “cout” prints to the console

std::cout << "Hello CG2LU!" << std::endl;

}

#endif //#ifndef CPP_INTRO HPP_

Institute of Computer Graphics and Algorithms 13

A Simple Example

cpp_intro.cpp:

#include "cpp_intro.hpp"

int main(int argc, char *argv[]) {
say _hello();
return EXIT_SUCCESS;

}

Institute of Computer Graphics and Algorithms 14

A Simple Example

cpp_intro.cpp after preprocessor-pass:

/*
*
* ——- MANY LINES OF CODE ----

* from iostream (a system header file)
*

*/

void say hello(void) {
std::cout << "Hello CG2LU!"™ << std::endl;

}

int main(int argc, char *argv[]) {
say _hello();
return 0O;

}

Institute of Computer Graphics and Algorithms 15

Header Guards

m Large programs tend to include the same
header file many times

¢ E.qg. itis very likely that many source files
have a

#include <string>

m Each time a header file is included in a file, its
content is copied into that file

¢ I.e. we face the problem of multiple
declarations for the same thing

¢ compiler doesn't like multiple declarations

Institute of Computer Graphics and Algorithms 16 #

Header Guards

= Small multiple inclusion scenario:
¢ B.hpp includes A.hpp

¢ C.cpp includes A.hpp and B.hpp (which
already includes A.hpp itself!)

Institute of Computer Graphics and Algorithms 17

Header Guards

m The preprocessor comes to the rescue
¢ test, If certain symbol is defined
¢ if not, define it and include the file's content
¢ If yes, just ignore the whole file

#ifndef SOME_TOKEN
#define SOME_TOKEN

//only included ONCE

#endif //#ifndef SOME TOKEN

Institute of Computer Graphics and Algorithms 18

Primitive Data Types

= Basically very similar to Java datatypes
¢ void : ,no (specific) datatype” (e.g. generic
pointers, functions returning no value /
accepting no parameters)

¢ char : (8 bit) character

¢ wchar_t : wide character (e.g. UNICODE)
¢ bool : boolean

¢ short, int, long :integers

¢ float, double, long double : floating
points

Institute of Computer Graphics and Algorithms 19

Primitive Data Types

m Some differences to Java:
¢ unsigned datatypes
¢ boolean (Java) => bool (C++)
¢ null (Java) => NULL (C++)
¢ no class objects representing primitive types

Institute of Computer Graphics and Algorithms 20

Primitive Data Types

m Determining a datatype's size in byte

¢ e.g. size of an integer
sizeof(int)

¢ check, If code executes in 32 bit (4 bytes) or
64 bit (8 bytes) environment

sizeof(void *)

Institute of Computer Graphics and Algorithms 21

Pointers and References

m Pointers

¢ Store the address of an object instead of its
value/content

¢ Need not be Initialized

¢ We can make a pointer refer to other addresses
many times

= pointer arithmetics
= the data type determines the step-size in bytes
= = may point to invalid address !!!

¢ When used, we need a "™ to actually read/write
the location they point to

¢ The address the pointer itself is stored in can be
determined

Institute of Computer Graphics and Algorithms 22

Pointers and References

m References are basically pointers, but
¢ Must be initialized, 1.e. cannot be NULL

¢ Once Initialized, 1t Is Impossible to make a
reference refer to another variable (i.e.
address)

= = Nno pointer arithmetics

¢ There is no “official® way to determine the
address of the memory cell, the reference
itself Is stored In

¢ When used, look just like “normal” variables
syntactically

Institute of Computer Graphics and Algorithms 23

Pointers and References

int 1i=123, j=456;
// use “*” for pointer declaration
int *ptr_to i = NULL;

int *ptr2 to i = &1i; // assign 1's address to pointer

// pointers may be uninitialized, but that’s bad practice
int *ptr3 _to i;

// use “&” for reference declaration

// NOTE: a reference MUST be initialized!

int &ref _to i = i;

ptr to i = &i; // make “ptr to 1” point to “i”

ptr3 _to i = ptr_to i; // note that now we don't need the "&*

// “ptr _to i” itself 1is stored at:
cout << “ptr_to _i’s address ” << &ptr_to i << endl;

Institute of Computer Graphics and Algorithms 24

Pointers and References

memory
address

|

0x0012FF60 |3 456

\ 4

0x0012FF64 |ptr to 1 O0x0012FF74

\ 4

0x0012FF68 |ptr3 to 1 O0x0012FF74

\ 4

0x0012FF6C |ptr2 to i O0x0012FF74

\ 4

0x0012FF70 | “ref to i“ Ox0012FF7/4
0x0012FF74 |1 123

a

4 Bytes
< >

Institute of Computer Graphics and Algorithms 25

User Defined Data Types

= Enumerations (enum)
m Arrays
m Structures (struct)

m Classes (class)

Institute of Computer Graphics and Algorithms 26

User Defined Data Types - Enumerations

= Datatype, where accepted values/elements are
enumerated explicitly

¢ enum typename {elementl, element2, ...};
= Similar to a (multi-)set

= Internally elements represented by integer constants

¢ Uninitialized elements are assigned the
predecessor's value +1

¢ If the first element is not Initialized, it is implicitly set
to 0

¢ It is possible to specify the associated integer
constant to each element explicitly

¢ Two elements may be set to the same constant!

Institute of Computer Graphics and Algorithms 27

User Defined Data Types - Enumerations

enum animation_state { Idle,
Walking=3,
Running=3,
Attacking,
Dead };

animation_state enemy state = Idle;

éguz f< "Idle was assigned " << Idle << endl;

// =4

cout << "Attacking was assigned " << Attacking << endl;
// ... enemy changes state ...

if(enemy state == Dead) { /* spawn new emeny */ }

Institute of Computer Graphics and Algorithms 28

User Defined Data Types - Arrays

Datatype that stores many elements of the same
type

element type array name[element cnt];

= Arrays don‘t check if the supplied index is valid
= Arrays don‘t store their size (element_cnt)
= Array name is also pointer to first element

char c_arr[] = {'h', '"i', "\0'};
char *str = "hi";

cout << "c_arr = " << c_arr << endl;
cout << "str = " << str << endl;

Institute of Computer Graphics and Algorithms 29

User Defined Data Types - Arrays

unsigned int idx;
const size_t arr_size=4;

float f_arr[arr_size];

// f_arr 1is the same as &(f _arr[O]), 1.e.
// f_arr points to the array’s first element

f arr[0]
f arr[1]

100.0f;
101.0f;

// pointer arithmetics; step-size in byte = sizeof(float)

// Llet’s assume that sizeof(float) equals 4

// f_arr+2 increments the address f arr by 8 bytes, which 1is
// exactly the size of 2 float array elements

*(f_arr+2) = 102.0f;

f arr[3] = *(f_arr+l) + 2.0f; // = 103.0f

Institute of Computer Graphics and Algorithms 30

User Defined Data Types - Structures

m Datatype that stores many elements of
possibly different types

struct struct name {typel ell; type2 el2; ...};

m In C++ same as class with public elements
only

struct coord {
float x, y;

}s5
coord origin;

origin.x
origin.y

Institute of Computer Graphics and Algorithms 31

Operators

= Indirection (dereference)
¢ *var
= Address-of (reference)
¢ &var
= Member
¢ complex_ var.member
= Member by pointer
¢ complex_var->member
= Scope resolution
¢ scope name::element
= And many more...

Institute of Computer Graphics and Algorithms 32

Operators

int var = 3;

int *ptr = NULL;

// Address-of (reference)
ptr = &var;
// => make "ptr" point to

var

// Indirection (dereference)

int tmp = *ptr;

// => access var’s value through the
// pointer “ptr”, which points to 1t

Institute of Computer Graphics and Algorithms 33

Institute of Computer Graphics and Algorithms 34

Operators

struct coord2D {
float x, y;

s

coord2D someCoord = {3.0f, -4.0f};//declaration and initialization
coord2D *someCoord ptr = &someCoord;

// Member
cout << "someCoord.y =

<< someCoord.y << endl;

// Member by pointer
cout << "someCoord_ptr->y =
cout << "(*someCoord_ptr).y =

<< someCoord ptr->y << endl;
" << (*someCoord ptr).y << endl;

Operators

int var = 1; // global (file) scope

namespace scope_ 1 {
int var = 2; // specific namespace
Y} // no ";" necessary

void foo(void) {
int var = 3; // (function-) Local scope

// Scope resolution
// Llocal scope => prints "3"

cout << "var = " << var << endl;

// global scope => prints "1"

cout << "::var = " << ::var << endl;

// named scope => prints "2"

cout << "scope 1l::var = " << scope_1l::var << endl;

Institute of Computer Graphics and Algorithms 35

Gobal Scope

m Unlike Java, C++ allows to define...
¢ Global functions
¢ Global variables

® e.g. main — method

= Avoid using global variables
m Stick to OO design

Institute of Computer Graphics and Algorithms 36

Gobal Scope

m Beware, Java-terminology and C++-

terminology for “global scope” differ

m Global scope or global namespace scope s
outermost namespace scope of a program, in
which

¢ objects

¢ functions

¢ types and

¢ templates can be defined

Institute of Computer Graphics and Algorithms 37

Gobal Scope

= A name has global namespace scope, If

identifier's declaration appears outside of all
¢ blocks

¢ namespaces, and

¢ classes

Institute of Computer Graphics and Algorithms 38

Global Scope

int g GlobalFoo = 0;

int multiply(int one, int two) {
return one*two;
}

void printGlobalFoo() {
std::cout << "Global Foo: " << g GlobalFoo << std::endl;

}

int main(int argc, char* argv[]) {
int foo = 2;
int baz = 4;

g GlobalFoo = multiply(foo, baz);

//will print "8"
printGlobalFoo();

return EXIT_SUCCESS;

39

Const Correctness

//A non-mutable string
const string fooA("Can't be modified.");

//A pointer to a non-mutable string
const string * fooPtrA = &f00A;

//A non-mutable pointer to a non-mutable string
const string * const fooPtrB = &f00A;

//Same as fooPtrB
string const * const fooPtrC

&f00A;

//A reference to a non-mutable string
const string& fooRef = fo00A;

Institute of Computer Graphics and Algorithms 40

Const Correctness

m const prevents variables/objects from being
modified

m Useitto...

¢ ...let the compiler tell you when you try to
modify something that you shouldn’t

¢ ...let the compiler optimize your code under
the hood

¢ ...have other people understand your code
better

Institute of Computer Graphics and Algorithms 41

Passing Variables

//pass by value

void someFunctionA(string baz) {
//baz holds a copy of foo
//This assignhment has NO effect on foo
baz = "Modified by someFunctionA.";

string foo("Original Value");

someFunctionA(foo0);
//Output: "Original Value"
cout << foo << std::endl;

Institute of Computer Graphics and Algorithms 42

Passing Variables

//pass by reference

void someFunctionB(string& baz) {
//function has read/write access to foo
baz = "Modified by someFunctionB.";

someFunctionB(fo0);
//Output: "Modified by someFunctionB"
cout << foo << std::endl;

Institute of Computer Graphics and Algorithms 43

Passing Variables

//pass by ref-to-const

void someFunctionF(const string& baz) {
//function has read-only access to baz
//NOTE: baz CANNOT be NULL
cout << "someFunctionD reads:

<< baz << endl;

//This wouldn't compile:
//baz = "some other value";

string foo("Original Value");
//foo won’t get copied
someFunctionF(fo0);

Institute of Computer Graphics and Algorithms 44

Passing Variables

//pass by pointer-to-const
void someFunctionD(const string* bazPtr) {

//function has read-only access to foo

//by dereferencing bazPtr, !! -> bazPtr can be NULL
if (bazPtr != NULL)
cout << "someFunctionC reads: " << *bazPtr << endl;

//This wouldn't compile:
//(*bazPtr) = "Modified by someFunctionC";

//Again, changing bazPtr, which is

//a local variable of type const string*
//has no effect on foo

bazPtr = NULL;

}

string foo("Original Value");
someFunctionD(&f00);

Institute of Computer Graphics and Algorithms 45

Passing Variables

m L

m L
0)

m L

se pass-by-value for small integral types

se pass-by-ref for modifying (multiple)
njects

se pass-by-const-ref for passing read-only

0,

Djects

m Pass pointers if you want to check for NULL
¢ But then check for NULL-ptr, really!

Institute

of Computer Graphics and Algorithms 46

Stack and Heap Memory

//A float on stack memory
float stackFloat = 1.0f;

//A float on heap memory
float* heapFloat = new float(1l.6f);

//A float array on the stack (size known at compile time)
float stackFloatArray[4];
... //initialize the array!

//A float array on the heap (size can be determined at runtime)
float* heapFloatArray = new float[dynamicArraySize];
... //initialize the array!

//Be a good citizen and cleanup!
delete heapFloat;
delete[] heapFloatArray; //-> don't forget '[]' for arrays!

Institute of Computer Graphics and Algorithms 47 #

Stack and Heap Memory

m Stack Memory
¢ Object size known at compile-time
¢ Memory of the current frame

¢ Objects are destroyed/cleaned up when
leaving current frame

¢ Very fast

¢ Stack Memory is limited, not suited for big
arrays (= use heap memory)

Institute of Computer Graphics and Algorithms 48

Stack and Heap Memory

= Heap Memory
¢ Object size can be determined during run-time
¢ new/delete to (de)allocate single objects

¢ new/[]/delete[] to (de)allocate arrays
= Initialize arrays right after allocation

¢ Prefer new/delete over C malloc/dealloc for
type safety

¢ Write cleanup code RIGHT AFTER you wrote
allocation code, really!

¢ Consider using smart pointers (next session)

Institute of Computer Graphics and Algorithms 49 #

Memory Leaks

//Create something on the heap
float* heapFloat = new float(6.0f);

//This creates a memory LeaR!!!
heapFloat = new float(7.0f);

//We are only cleaning up the Llast allocation
delete heapFloat;

m Each new needs its own delete!

Institute of Computer Graphics and Algorithms 50

Common Memory Pitfalls

» Memory Leaks

¢ Use tools to check for memory leaks
= valgrind, gdb, Visual Studio, ...
= - See thread in forum for instructions

= Double Deletion

m Accessing deallocated resources

m Deletion of NULL pointers

= Underallocating arrays (out of bounds access)

Institute of Computer Graphics and Algorithms 51 #

Class Declaration

class Person {
public:

Person(const string& name); //Constructor
~Person(); //Destructor

const string& getName() const; //Getter
void setName(const std::string& name); //Setter

//Returns a string with some message
string saySomething() const;

private:
string _name;

}; //<- don't forget the ";" Il!

Institute of Computer Graphics and Algorithms 52

Class Declaration

m Declare classes in header files

m If you have cyclic header dependencies (A.h
requires B.h and vice-versa)

¢ Rethink your design

¢ Use forward declarations in header and defer
#include to iImplementation

¢ Use #include as late as possible

Institute of Computer Graphics and Algorithms 53

Constructor

Person: :Person(const string& name) : _name(name) {
//good place to allocate stuff (new)

}
m Use Initializer list to initialize members

= Required for const members or reference
members

= Initializer list has to init the members in the
same order they have been declared

m Once the constructor body has finished the
object Is alive = the destructor Is guaranteed
to be called on object deallocation

Institute of Computer Graphics and Algorithms 54

Constructor cont’d

= Multiple constructors:
¢ Do not implement one Iin terms of the other:

Person: :Person(const string& name) : _name(name) {}

Person: :Person() {

e Yy a temporary
eta AR
}
¢ Correct:
Person::Person() : _name("default-name") {
//Default Constructor
}

Institute of Computer Graphics and Algorithms 55

Destructor

Person: :~Person() {
//deallocate members (delete,...)

¥

= If (and only If) object Iis alive, destructor Is
guaranteed to be called

¢ Deallocate members Iin here

Institute of Computer Graphics and Algorithms 56

Const methods

m Prevents the method from modifying class-
members

class Person {
public:

ééast string& getName() const;
}s
m Use const methods to complete const
correctness, or this:

void printName(const Person& p) {
cout << p.getName() << endl;

}
...wouldn’'t compile

Institute of Computer Graphics and Algorithms 57

Class Inheritance

class Student : public Person {

s

m Use public inheritance to model “is-a” relations

¢ Student is a Person

¢ Inherited class has access to public and

protected members and met

= There are also protected and
Inheritance techniques

nods

orivate

¢ ... these are more exotic, don’t bother

Institute of Computer Graphics and Algorithms 58

Class Inheritance - virtual

class Person {

public:
Person(const string& name);

virtual ~Person();

“ string saySomething() const;
. cos
class Student : public Person {

public:
Student(const std::string& name, long matNumber);

virtual ~Student();

long getMatNumber() const;

virtual string saySomething() const;

private:
const long _matNumber;

}s 59

Class Inheritance - VTable

= Declaring a method virtual

¢ Allows subclasses to override methods (vs.
hiding methods)

Student student("Jo", 1234567);

Person& personRef = student;

//This will call Student::saySomething()
cout << personRef.saySomething() << endl;

¢ Without declaring saySomething as virtual,
the code would have called
Person::saySomething instead

Institute of Computer Graphics and Algorithms 60

Class Inheritance - VTable

» Watch out:

¢ You have to use pointers or references for
polymorphism:

S s("Markus"”, 1 ;
//This relation to Student
PErson p = s;

¢ Correct:

Student s("Markus", 1234567);
Person& p = s;

Institute of Computer Graphics and Algorithms 61

Class Inheritance — Constructor Chain

Student: :Student(const std::string& name, long matNumber)
: Person(name), matNumber(matNumber)

{
}
= Use initializer list to initialize base class
= There is no super() as it is in Java
= Order of creation (apply recursively):
1. Base class, If any

2. Data members in the order they have been
declared (non-static)

3. Constructor body is executed

Institute of Computer Graphics and Algorithms 62

Class Inheritance — Destructor Chain

m Destructor Chain is implicit

¢ You don’t have to call base classes’
destructor explicitly

¢ BUT you have to declare them virtual, or...

Person* somePerson = new Student("Mic", 2345678);
delete somePerson;

¢ ... Student::~Student() won't ever be executed

Institute of Computer Graphics and Algorithms 63 #

Class Inheritance - virtual

class Person {

public:
Person(const string& name);

virtual ~Person();

“ string saySomething() const;
. cos
class Student : public Person {

public:
Student(const std::string& name, long matNumber);

virtual ~Student();

long getMatNumber() const;

virtual string saySomething() const;

private:
const long _matNumber;

}s 64

Class Inheritance — Accessing base class

m To access base class methods in overriden
methods:

string Student::saySomething() const {
string result = Person::saySomething() \
+ " and I am a student (nr.: " \

+ LongToString(_matNumber) + ").";

return result;

Institute of Computer Graphics and Algorithms 65

Literature

m Thinking in C++ (B. Eckel)

¢ Introductory, free

¢ Avalilable online:
http://www.mindview.net/Books/TICPP/ThinkingiInCPP2e.html

m Accelerated Cpp (A. Koenig)

¢ Introductory
http://www.acceleratedcpp.com/

m Effective C++ (S. Meyers)
¢ Essential literature for advanced C++

Institute of Computer Graphics and Algorithms 66

http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html
http://www.acceleratedcpp.com/

That's it, folks!

= Go home, complile code...

¢ Code listing are online as complete examples

= Next session:
¢ More C++ features
¢ Standard template library
¢ Afew How To’s
¢ Your questions - forum!

m Questions?

Institute of Computer Graphics and Algorithms 67

