Submission 2 Documentation - The Chosen Frog

Reiser Simon

June 2019

The game currently only works with a NVIDIA GPU currently!!

1 Features and Implementation

Since I am developing on a Linux machine, thechosenfrog is a CMAKE project,
that contains most dependencies as source, which are built together with the
actual project source to ensure cross-platform compatibility.

The game is updated using a fixed time step. To achieve frame rate indepen-
dence, the game is only updated until enough time is accumulated or updated
multiple times if too much time has passed since last frame. The accumulator
is capped to a maximum such that there is a maximum amount of updates that
can be performed per frame, without this, slow machines would not be able to
catch up with updates needed to perform Therefore the game may slow down
on slow machines.

1.1

Gameplay
First Playable: The player has to run and jump on procedurally placed

platforms to reach the red cloud.
3D Geometry: The game uses a signpost model loaded from an .obj file

The loading of models is done using the assimp| library. The core loading
code can be found in Game/src/assets/MeshList.cpp.

Textures: The game has support for diffuse textures and almost all
meshes contain uv mapping information, but the game sparingly uses tex-
tures. The skybox and text are the only textured objects, which can be
seen in the game

Win/Loose Condition: The game features a win and loose condition.

When falling off the platforms, the player looses and the game can be
restarted using F11.
The player wins by reaching a red platform two times.


https://github.com/assimp/assimp

Players can challenge themselves by reaching the top as fast as possible
or with the least amount of jumps. Both information is shown at the top
platform and in the heads-up display.

Intuitive Controls: The first version of the running and jumping have
been implemented. The PhysX Kinematic Controller is used to perform
position integration and collision detection, velocity and acceleration of
the player is not managed by PhysX.

Responsible Files and Methods:

— Game/src/components/CharControllerComponent(.h/.cpp)

— Game/src/EventManager.cpp

— Game/src/GameUpdater.cpp
Intuitive Camera: The movement of the camera is done like in most
first person shooters. To achieve this, the ability to add objects/transforms

as children of other objects/transforms (tree structure) has been imple-
mented (see Game/src/components/TransformComponent.cpp)

The camera object is a child object of the player, thus always follows the
player and only manages rotation around the (local) x axis.

Responsible Files and Methods:

— Game/src/components/CameraControllerComponent(.h/.cpp)
— Game/src/GameUpdater.cpp

Documentation: You are currently reading the documentation of the
game.

Adjustable Parameters: The following parameters can be changed by
setting the values in the settings file located at assets/settings/settings.ini:
— Window Width
— Window Height
— Fullscreen
— Refresh Rate
— Brightness
By default the game may not utilize the full width of the window, since

the field of view may be too high in my opinion and the gameplay does
not need a big horizontal view, since it’s mostly vertical.

But there are also some viewport settings in the gameplay settings, which
can be accessed by pressing Ctrl + 4. (Press F8 to hide/show cursor),
where the viewport behaviour can be changed.

Physics Engine: The game currently uses PhysX to perform collision
detection and position integration (movement) for the player controller.



e Heads-Up Display: In the bottom left corner, the time is shown as well

1.2

as the amount of jumps performed.

Effects:

Vertex shader animation: When the player charges up a jump (see
Controls), the jump that would be performed by releasing the jump key is
visualized by showing a thick, transparent dashed parabola. The dashes
are moved over time along the jump parabola.

The dashes are actually not animated in the vertex shader, but in a geom-
etry shader, since the dash geometry is calculated on the fly. The game
only passes a vertex buffer with values ranging from 0 to 1 to the gpu to
tell at which positions (in parameter space) of the parabola a dash should
be displayed. The vertex shader simply forwards this value and the ge-
ometry shader changes the value over time calculates the world position
of this point and generates the geometry for the dash.

Responsible Files and Methods:

— Game/src/GameRenderer.cpp
— Game/assets/shaders/parabola(.vert/.frag/.geom)

Also, the vertices of the clouds are animated, they grow and shrink a little
bit over time using a sine function.

Responsible Files and Methods:
— Game/assets/shaders/cloud.vert

Contours via Edge Detection: The game renders contours using both
depth and normals (color is not used). Normal contours on clouds fade in
when the player is close enough, since the outline would be too big for far
away objects.

To achieve contours the scene is rendered with two render targets to a
frame buffer object. The normal scene is rendered into the first render
target and the view space normals into the second one. Then, the texture
from the first render target is rendered onto a quad mapped directly on the
screen and the contours are rendered on top afterwards using the texture
from the second render target as input for the post processing shader.

The post processing shader uses a Roberts Cross Kernel with variable size
to control the outline size.

Responsible Files and Methods:

— Game/src/GameRenderer.cpp
— Game/assets/shaders/fbo(.vert/.frag)
— Game/assets/shaders/fboPost.frag


https://en.wikipedia.org/wiki/Roberts_cross

2

2.1

2.2

Controls

Player Controls

W A S D: Movement of the frog - W to move the frog forward, A to
move the frog to the left, S to move backwards, D to move to the right.
The frog can also be moved in the air up to a certain degree.

Space: Jump - When pressing the space key the player charges up a jump,
which is performed upon releasing the space key. The longer the space
key has been hold, the farther and higher the jump will be.

The looking direction also influences the jump, if the player looks up then
the jump will be higher, but less far, if the player looks straight, the jump
will be far but not high.

Upon holding the space key, the jump, that will be performed, is visualized
with a parable indicating how strong the jump will be and where the frog
will land, assuming the player does not influence the jump by pressing the
movement keys.

Mouse: Camera Rotation - The camera will rotate through solely moving
the mouse up and down or left and right.

Right Click: Cancel Jump - Pressing the right mouse button while charg-
ing up a jump, cancels it.
Debug Controls
F11: Restart game
F10: Toggle Backface Culling

F9: Toggle Wireframe Rendering (This does not really work currently,
since you only see the quad where a Frame Buffer Object is rendered
onto)

F8: Hide/Show Cursor Toggle

Ctrl + 1: Toggle debug logging window

Ctrl + 2: Toggle debug component viewer window
Ctrl 4+ 3: Toggle debug asset viewer window

Ctrl + 4: Toggle game and display settings window

3 Illumination

Currently, no lighting has been implemented. Support for diffuse textures has
been implemented.



4 Used libraries

e jassimp| - Assimp is used for loading models (in our case from .obj files)
e PhysX - PhysX is used for collision detection and movement
e ¢lad - glad is the OpenGL Function Loader used.

e ¢glfw| - GLFW is used for window management and providing time and
input from the underlying system

e glm - We use the vector and matrix types and operations provided by glm.

e [imgui| - imgui is a light-weight immediate mode GUI library used for cre-
ating debug GUI.

e stb_image| - stb_image is a small, header-only library we use for loading
images from the disk.

e stb_truetype - stb_truetype is a small, header-only library we use to load
true type fonts, generate bitmaps and load font information.

e 'soloud|- SoLoud is used for loading and playing sound and music (currently
unused)

e cute filewatch - cute_filewatch is a small, header-only library for watching
directories for file changes. This will be used for hot reloading assets
while the game is running, but is currently not fully functional in this
submission.

e RuntimeCompiledCpp|- RuntimeCompiledCpp is a system, that makes it
possible to recompile parts of the application while it is running. This is
currently not functional.



https://github.com/assimp/assimp
https://github.com/NVIDIAGameWorks/PhysX
https://github.com/Dav1dde/glad
https://www.glfw.org/
https://github.com/g-truc/glm
https://github.com/ocornut/imgui
https://github.com/nothings/stb
https://github.com/nothings/stb
https://github.com/jarikomppa/soloud
https://github.com/RandyGaul/cute_headers
https://github.com/RuntimeCompiledCPlusPlus/RuntimeCompiledCPlusPlus

	Features and Implementation
	Gameplay
	Effects:

	Controls
	Player Controls
	Debug Controls

	Illumination
	Used libraries

