
 

Survive Until Daylight 
Made by Jakob Staudinger & Gabriel Sperrer 

Gameplay 
The game features up to four players (either one using keyboard and mouse or more 
using controllers), a nice landscape and goblins. The main goal is to survive until 
daylight and to fight the goblins until then. 

How to play 

The gameplay is as in many other first-person games: Use W-A-S-D to walk (or the 
left joystick on the controller), the mouse to look around (or the right joystick on the 
controller) and the left mouse button (or A on the controller) to attack. Using shift (or 
RB on the controller) one is able to run faster to escape the goblins. You can jump by 
pressing Space (or B on the Controller). 

Implementation 
A lot of our knowledge comes from two books, ​Game Engine Architecture​ and 
Introduction to 3D Game Programming with DirectX 12​. Those have been helpful for 
a lot of the following and won’t be mentioned every time. 

Structure 

We’ve structured our engine into modules, each of which more or less independently 
working on a specific section of the game. 

Options 

In the options screen (accessible from the pause menu) you can change some 
settings of the effects. The adjustable options are: 

- Ambient Intensity: Controls the overall brightness of the scene 
- Occlusion Radius: Controls the sampling range of SSAO (how far away 

geometry can be before it does no longer influence ambient occlusion) 
- Bloom Radius/Bloom Sigma: Controls the parameters of the blur applied to 

the bloom effect (gaussian blur) 
- Bloom Threshold: Controls how bright a part of the screen has to be for it to 

bloom 
- Cloud speed: Controls how fast the clouds move 
- Cloud cutoff 1|2: Controls the “density” of the clouds 

https://www.amazon.de/Engine-Architecture-Second-Jason-Gregory/dp/1466560010
https://www.amazon.de/Introduction-Programming-DirectX-Computer-Science/dp/1942270062/


 

- Debug Shadows: Controls whether to display the slices of the Cascaded 
Shadow Maps in color 

By pressing the “Save” button, the settings are saved to a file and loaded the next 
time the game starts. 

Effects 

All Effects can be found in Engine/Rendering/Effects (cpp code), in Engine/Internal 
Resources/Shaders as well as in Resources/Shaders (.hlsl code) 

Multi-Light Scenes 

We support Point- and Directionallights and have no problem rendering a lot of them 
as we are using deferred rendering for calculating the lighting. However, only one or 
maybe two of these light sources should be casting shadows, otherwise the 
performance will drop drastically. 

Cascaded Shadow Maps 

We support Cascaded Shadow Maps for directional light sources. We are closely 
following this paper by NVIDIA: 
https://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_m
aps/doc/cascaded_shadow_maps.pdf​. To see the different cascades more clearly, a 
debug switch can be toggled in the Graphics options in the game. 

SSAO 

We implemented a Screen-space Ambient Occlusion Algorithm very similar to 
http://john-chapman-graphics.blogspot.com/2013/01/ssao-tutorial.html​. The 
occlusion radius can be adjusted in the Graphics Options (or turned off by setting it 
to 0). 

Terrain 

We are loading a DDS heightmap of 32-bit floats and then using it as a displacement 
map for our terrain. The colours are calculated based on how high the current vertex 
is and how steep it’s rise is.  
This was inspired by ​http://thedemonthrone.ca/projects/rendering-terrain/​. 

Animations 

We are loading skinned meshes and animations using the glTF file format. We are 
interpolating between the keyframes for each joint every tick on the CPU, and 
transforming the vertices based on their weight on the GPU using the resulting 
matrices. 

https://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
https://developer.download.nvidia.com/SDK/10.5/opengl/src/cascaded_shadow_maps/doc/cascaded_shadow_maps.pdf
http://john-chapman-graphics.blogspot.com/2013/01/ssao-tutorial.html
http://thedemonthrone.ca/projects/rendering-terrain/


 

Procedural Textures 

All textures used by the Skysphere are procedurally generated. The cloud generation 
uses a similar technique as shown in ​https://lodev.org/cgtutor/randomnoise.html​. 
For the stars we simply take a random noise texture and discard values outside of a 
very small range ([0.5, 0.505]). 

Physically Based Shading 

For PBR we followed this tutorial ​https://learnopengl.com/PBR/Lighting​. However, 
we did not implement IBL from the following tutorial. 

Bloom 

We use a simple Bloom algorithm as a Postprocessing Effect. Only values above a 
certain threshold (adjustable in the Graphics Settings) are kept and blurred using two 
Gaussian blur passes (horizontal and vertical). The sigma and kernel size of the 
gaussian blur can also be adjusted in the options. 

Day / Night Cycle 

We’ve implemented a fully functional day/night cycle as it matches the topic of our 
game. The sky adapts to the rotation of the sun and also stars and the moon start 
appearing or disappearing depending on the sun position. 

Libraries & Tools 

For creating the Engine behind SUD, we used the Physics Engine​ PhysX by Nvidia​, the 
Microsoft GLTF SDK​ and ​Pix for Windows​ (only for debugging purposes).  
The only external tools involved were Blender and Adobe Photoshop, although we 
wrote custom tools when necessary. 

https://lodev.org/cgtutor/randomnoise.html
https://learnopengl.com/PBR/Lighting
https://www.geforce.com/hardware/technology/physx
https://github.com/Microsoft/glTF-SDK
https://devblogs.microsoft.com/pix/

