
Starman’s road trip to Mars
Gerhard Andreas Stog (00954038)
Julia Eder (01229278)

Brief description of the implementation

Intuitive camera
We have implemented a third person camera, which follows
the car. The camera moves forward automatically. It is
possible to move around with keys in the 3D space.

Moving objects
The asteroids can rotate around themselves, and other asteroids can rotate around a parent
asteroid.

Win/Loose Condition
The player wins the game, if 5 battery-boxes were collected. The player loses the game, if
the health points were below 0.

3D-Geometry
The car model is loaded with Assimp. The model is loaded from the internet.

Texture Mapping / Simple lighting and materials
All objects are illuminated with the Blinn Phong Illumination model and textured. Directional
Light is used. The skybox doesn't have lightning.

Controls / Adjustable Parameters

WASD Move Player

ESC Close Game

F3 Fullscreen On/Off

F4 Cel Shading On/Off

F5 Contours On/Off

F6 HUD On/Off

F8 View Frustum Culling On/Off

Brightness
The brightness can be changed in the settings.ini file.

Gameplay
The camera moves forward and you have to avoid crashing into asteroids. In the beginning
the player has a health of 100. If the car crashes into an asteroid the player loses 20 points
of his game life. The game is over if no life points are left. The mission of the player is to
collect 5 battery-boxes. If the player collects enough battery-boxes and has enough health
points, the player wins the game.

Feature
A skybox is implemented to give a better view of the movement of the camera. The skybox is
textured with DDS faces.

Collision detection
The collision detection is done with bounding spheres. It is not possible to crash into
asteroids. When you crash into asteroids, you get pushed back.

Optional Gameplay

Heads-Up Display
→ Stog

The HUD is implemented with the library freetype. In the
game the fonts “Obelix Pro” and “Arial” were used.

View-Frustum Culling
→ Eder

The frustum is calculated with die view and projection matrix
of the camera. Every geometry object is approximated with a
sphere to cull.

Effects

Cel Shading
→ Eder

For this effect, we used the texture fragment shader provided
from the template and expanded the phong shading model. In
the first the light intensity of ambient, diffuse and specular is
calculated. Then the intensity is multiplied with the shading
level, in our case 5.

Contours with Edge
Detection
→ Eder

The contours were added in post processing. For edge
detection the sobel operator is used. The shader not only
returns the color but also an image of the normals.

GPU Particle System with
Compute Shader
→ Eder

For the particle system, we followed the instructions of the
slides in Tuwel. In the Particles class some initial particle data
is created and copied to the SSBOs. The compute shader is
updating this particles and returns the values to the ping-pong
SSBOs. The geometry shader transforms the particles into a
quad that always faces the camera´s viewing direction. In the
fragment shader the color for each particle is set.

Hierarchical animation
→ Stog

For the implementation of the animation, we have a scene
object class. The asteroid and the battery class have an
inheritance on the scene object class. With the method
addChild any number of children objects can be added. The
children objects do not need to be updated and drawn.

Environment Mapping
→ Eder

For this effect, a skybox is necessary which shows the
background from the scene. The six faces were loaded in the
Material class. In the texture shader the ray of reflection is
saved and the the right position in the texture is found there.
In the end with the method mix() the reflection part from the
texture is shown. The coefficient in mix() determines the
degree of the reflection.

Shadow Mapping with
PCF
→ Stog/Eder

The scene is rendered two times. In the first pass the depth
map is rendered and in the second pass the scene is again
rendered with the generated depth map. To achieve this
procedure we have to shaders. One is responsible for the
creation of the depth map and the other is a extension of the
texture shader, which was provided from the framework. In
the texture shader the calculation of the shadow and the
correction of the artefacts is done.

Additional libraries and Links

Skybox ➔ https://spacedock.info/mod/924/Pood%27s%20Calm%20N
ebula%20Skybox

Cel Shading ➔ http://www.sunandblackcat.com/tipFullView.php?l=eng&to
picid=15&topic=Cel-Shading

Contours with Edge
Detection

➔ http://adrien.io/opengl-course/post-processing/
➔ https://computergraphics.stackexchange.com/questions/36

46/opengl-glsl-sobel-edge-detection-filter

GPU Particle System with
Compute Shader

➔ CG Repetitorium Slides

View-Frustum Culling ➔ http://www.lighthouse3d.com/tutorials/view-frustum-culling/
➔ http://www.rastertek.com/dx10tut16.html

Battery Texture ➔ https://i.imgur.com/Hevv8Gj.png
➔ https://ya-webdesign.com/explore/logos-transparent-flash/

Environment Mapping ➔ https://learnopengl.com/Advanced-OpenGL/Cubemaps

Shadow Mapping with
PCF

➔ https://learnopengl.com/Advanced-Lighting/Shadows/Shad
ow-Mapping

➔ http://www.opengl-tutorial.org/intermediate-tutorials/tutorial
-16-shadow-mapping/

Model Loading
(Assimp, SOIL)

➔ http://www.assimp.org
➔ https://www.lonesock.net/soil.html
➔ https://learnopengl.com/Model-Loading/Assimp

HUD
(Freetype)

➔ https://www.freetype.org
➔ https://learnopengl.com/In-Practice/Text-Rendering
➔ https://www.dafont.com/obelixpro.font
➔ https://docs.microsoft.com/en-us/typography/font-list/arial

