
Space Sweeper  
Sebastian Schrammel, 1526197 
Hana Salihodzic, 1320206 
 
 
 
Description of the implementation:  
 
Freely movable camera  
All transformations from model to perspective 
are handled by the camera class. The player- 
controlled spaceship automatically moves 
forward and the camera is attached to it. The 
camera thus follows each movement of the 
ship which results in a third person view.  
 
Game Objects  
We use Assimp to load the models that we created in blender (spaceship, asteroids, 
sun, trashcans, path rings) and store them using our model class, where each model 
is composed of all its meshes and textures. Using the collada format to export the 
created level allows us to retain mesh references, so that identical meshes, such as 
asteroids, don't have to be loaded multiple times.  
All objects that have 3D coordinates (such as Model or Camera) inherit from the 
class SceneObject, which handles all 3D positions, orientations and movements.  
 
Texture Mapping  
We also load the texture coordinates and vertex normals from the 3D objects. For 
texture loading itself we use stb_image. If the same texture is used multiple times 
(e.g. for multiple asteroids) it is only loaded once.  
 
Simple lighting and materials  
We implemented a simple phong lighting model in our fragment shader. For each 
object we defined material constants (ambient, diffuse and specular) that describe 
how a mesh should be shaded. We have a single centered light source at the sun’s 
position that illuminates the level. 
 
Controls  
The spaceship can be controlled with the four arrow keys or WASD. Forward 
movement happens automatically. The F9 key can be used to toggle Debug mode, in 
which the camera can be moved independently from the spaceship using mouse 
dragging and W/A/S/D or the arrow keys. 



● W/UP:  Pitch down 
● S/DOWN:  Pitch up 
● A/LEFT: Roll left 
● D/RIGHT: Roll right 
● Q: Yaw left 
● E: Yaw right 
● P: Pause/unpause 
● F5: Toggle Bloom 
● F6: Toggle subdivision level 
● F7: Toggle normal mapping 
● F8: Toggle HUD 
● F9: Toggle debug mode 
● F10: Toggle wireframe mode 

 
Basic Gameplay  
The player can maneuver the ship through the demo level that is available. The goal 
is to finish the track which is designated by rings. The rings must be passed in the 
order that they appear in. On the way, collectibles (trash cans) can be picked up to 
reach a higher score. The state of the game is printed as the window title in 
windowed mode. If the spaceship collides with an obstacle, the game is over. As 
soon as all rings have been passed, the game is finished. The goal is to collect as 
many trash cans as possible. 
When the player reaches the end of the track, they are awarded points depending 
on the number of trash cans collected on the way, and the time it took them to finish 
the track. 
 
Features of the game  
The game offers intuitive 3D flight controls and a somewhat realistic space 
atmosphere. Smooth motion is taken care of by the Physics engine.  
 
How and which objects are illuminated/textured?  
All objects are textured and illuminated, most of them with the complete phong 
model. However, certain objects such as the sun and background skybox are only 
illuminated with ambient light, which is achieved by setting the respective material 
constants. All objects have a diffuse texture that provides color data. For this 
purpose we implemented two shaders, one for the phong-shaded models in the 
scene and one specifically for the skybox.  
Adjustable parameters  
Certain parameters can be adjusted via a .ini file, which can be found in 
bin/res/config. These are FOV, brightness, draw distance, framerate cap, fullscreen 
mode, screen resolution and blur iterations for bloom.  
 



Physics engine  
Nvidia PhysX handles collision detection and player movement. The physics 
simulation uses a fixed timestep. Obstacles are modelled as RigidStatics, the 
spaceship is a RigidDynamic, collectibles and path rings use trigger shapes.  
 
HUD Overlay 
We implemented a simple HUD to show the current game time and number of trash 
collected. This text rendering utility is also used to notify the player when the game 
has ended. 
 
Effects 

● Bloom 
To improve the atmosphere and make the path rings more visible, we 
integrated bloom into our rendering pipeline. The main shader stage writes its 
output to a framebuffer, which is then blurred around the brighter areas. After 
that, the blurred bright spots are blended over the existing scene, leading to a 
light-bleed effect around bright areas. The number of iterations of blur can be 
adjusted via the respective parameter in the .ini config file.  

● Subdivision Surfaces 
Since the geometric detail of the asteroid base meshes that are loaded from 
our blender interface is kept fairly basic (in order to keep vertex count 
acceptable), we implemented a subdivision algorithm. The three subdivision 
levels are computed while the game loads and can be toggled seamlessly 
while the game is running. 

● Normal Mapping 
To enhance the details of the asteroids, we have implemented normal 
mapping. A TBN matrix is used to transform normal vectors read from an 
RGB normal texture, and apply those to the asteroid models on a 
per-fragment basis. The tangents needed for this process are calculated 
manually and passed to the shaders as vertex attributes. 
 
 
 
 
 
 
 
 
 
 
 
 



Resources 
● Model loading: assimp: ​http://www.assimp.org/ 
● Image loading: stb_image: 

https://github.com/nothings/stb/blob/master/stb_image.h 
● ini reading: ini.h: ​https://github.com/benhoyt/inih 
● Subdivision Surfaces: 

http://www.pbr-book.org/3ed-2018/Shapes/Subdivision_Surfaces.html 
● Tangent calculation for normal mapping: 

http://ogldev.atspace.co.uk/www/tutorial26/tutorial26.html 
● Font loading: FreeType: ​https://www.freetype.org/ 
● Font: ​https://www.1001fonts.com/ 
● Textures: Total textures repository 
● Other inspiration: ​https://learnopengl.com/ 

 
 
 

http://www.assimp.org/
https://github.com/nothings/stb/blob/master/stb_image.h
https://github.com/benhoyt/inih
http://www.pbr-book.org/3ed-2018/Shapes/Subdivision_Surfaces.html
http://ogldev.atspace.co.uk/www/tutorial26/tutorial26.html
https://www.freetype.org/
https://www.1001fonts.com/
https://learnopengl.com/

