
Space Racer
Florian Wicher (01526729), Juliette Dubois (11831465)

Features
- Realistic behavior of the space vessel and asteroids, thanks to physics engine

- Glittering asteroids (vertex normal mapping)

- An awesome, procedurally generated planet in the background

Controls
The space ship of our hero travels at a constant speed (although he can go faster for a limited time

after collecting an extra that allows him to).

• W,A,S,D: steer the spacecraft (Easy way to control the direction. Allows tutors to easily verify

that the win-condition is working.)

• I, J, K, L: fire thrusters (Hard way to control the craft. The way real astronauts play this game.)

• Space: Impulse forward

• B: Impulse backwards

• O,P: Increase/decrease brightness

• Q: Fire regular shots

• E: Fire self-guided shots

Gameplay
You need to shoot all the asteroids in the time you have. The interface indicates both the numbers of

asteroids left to shoot and the amount of time you have left. Should you run low on time, you can

collect the extra that is situated between the two pillars in the scene. After you have shot all

asteroids, fly in between the two pillars in time to finish the level.

Light
We are using the lights from the ECG-Framework – a directional and a point light.

Texture
Textures are applied for the lens flare and the objects in the game using the cg frameworks texture

class.

The asteroids are a solid gray, but use normal mapping, whence the craters and the surface

structure.

The particle system generates the flames in its geometry shader and calculates the color of the

flames as a function of the distance from the fire’s center.

To make the hud, a simple square is drawn on the screen and filled with different textures.

Used libraries
http://www.assimp.org/ for loading obj files

https://www.nvidia.fr/ nVidia Physx for calculating collisions.

Camera
The camera remains fixed behind the vessel.

http://www.assimp.org/
https://www.nvidia.fr/

Which tutorials did we use, and for what?
C++ Primer by Stanley Lippmann: Countless of the techniques described, e.g. random number

engines and distributions, smart pointers, inheritance in C++, lambda functions, insert-iterators, etc.

etc.

OpenGL Superbible: Used as a refresher on OpenGL.

Grundwissen Mathematikstudium (Arens et al.): Gram-Schmidtsches Orthonormierungsverfahren (S.

670), Kapitel 7: Analytische Geometrie (S. 234ff.);

Textures in OpenGL : https://www.youtube.com/watch?v=n4k7ANAFsIQ

Tutorials on OpenGL with C, especially the tutorial on billboarding and vertex buffer feedback for the

fire: http://ogldev.atspace.co.uk/

A number of approaches for frustum culling: http://www.lighthouse3d.com/tutorials/view-frustum-

culling/view-frustums-shape/

Lens flare (Java): https://www.youtube.com/watch?v=OiMRdkhvwqg

Normal Mapping: https://learnopengl.com/Advanced-Lighting/Normal-Mapping

Transformation of surface normals from tangent to world space (normal mapping):

http://www.terathon.com/code/tangent.html

Vertex shader animation: Slides from the CG lectures at TU Wien

Procedural textures: https://thebookofshaders.com/11/?lan=fr

PhysX:

https://gameworksdocs.nvidia.com/PhysX/4.1/documentation/physxguide/Manual/Index.html

https://gameworksdocs.nvidia.com/PhysX/4.0/documentation/PhysXAPI/files/index.html

Techniques we implemented
1. Basic gameplay:

Win-loose-condition. If you manage to fly in between the goal posts within 40 seconds, you

win. Else, you loose.

2. Physics

Implemented collision detection between asteroids, and asteroid and ship. Based on the

indicated bounding shapes and initial movement and torque, the framework calculates the

interaction between the objects. The movement of the ship is also realized by sending

commands to the PhysX Framework.

3. View Frustum Culling

Each object has a bounding sphere, if this sphere is outside the view-frustum that is

composed of 6 planes (in the negative half-space of at least one of the planes), the object

isn’t rendered. See console output for number of draw calls intercepted by frustum culling.

4. HUD

To make the hud, a simple square is drawn on the screen and filled with different textures,

each one corresponding to one part of the hud. The hud is used to show the time, and also

the win / loose screens.

For the chrono each seconds a function is called to change the textures drawn in the square.

5. GPU Particle System using Transform Feedback

https://www.youtube.com/watch?v=n4k7ANAFsIQ
http://ogldev.atspace.co.uk/
http://www.lighthouse3d.com/tutorials/view-frustum-culling/view-frustums-shape/
http://www.lighthouse3d.com/tutorials/view-frustum-culling/view-frustums-shape/
https://www.youtube.com/watch?v=OiMRdkhvwqg
https://learnopengl.com/Advanced-Lighting/Normal-Mapping
http://www.terathon.com/code/tangent.html
https://thebookofshaders.com/11/?lan=fr

The fire on the left goal post (we didn’t know where else to put it) is realized using transform

feedback. The positions of the flames of the fire are generated by using a random() function

inside the UpdateParticleSystem geometry shader that uses the position of previous flames

in the environment as a seed; then rendered as triangles.

6. Vertex Shader Animation

In the vertex shader, there is a uniform for the time. This uniform is used to move the vertex

position.

Then the normals need to be adjusted to the new position. Since the surface before

transformation is a cylinder we can compute explicitely the new normal by taking the cross

product of the derivative of the surface after transformation.

7. Procedural textures:

The resource given above explains how to generate random number and 2D fractional noise

(adding several octaves with various frequencies and amplitudes). In the resource a function

is proposed that take a 2D vector input and return a float as noise value.

To create the texture of the planet, this function is used two times for each fragment.

First, it is called with the (x,y) coordinates of the vertex as an argument (z was not used). The

resulting noise is used to take a value from a color map ranging from red to orange. The

number of octave, frequencies and amplitudes were adjusted to obtain a planet-like texture.

Then the function is called with (x,y) position multiplied by time as an argument. This is used

to make a kind of moving texture, like some clouds on the surface of the planet. Fewer

octaves were used to have a less precise texture. This noise is used to take a value between

black and white.

The color of the fragment is then computed as the sum of the color of the planet and the

color of the cloud.

8. Simple Normal Mapping:

The asteroids surface structure is achieved using normal mapping. Normals are responsible

for how light is reflected off a surface. By altering just vertex normals, one can model

intricate surface structure without having to generate complex geometry. This approach

saves space and consumes less processing power.

9. Lens Flare

A light source position is indicated (the fire in our case), then the flare-textures handed to

the Flare manager are distributed on the ray that originates in the screen center and passes

through the light source. The opacity of the flares increases as the light source comes closer

to the center of the camera.

What tools did we use?
• Visual Studio

• Nvidia nSight

• JetBrains ReSharper

• Blender (for creating the models)

• Photoshop and Plug-ins by nVidia to create textures and generate normal maps.

