
Princess Prickly Pear

Submission 2
● Eva Jobst: 51824341
● Klaus Galler: 01226155

A (well known) captured princess does not want to wait for her rescuer anymore and decides
to break out of her prison. A Jump & Run Escape Game.

Implementation & Requirements
Compulsory & Optional Gameplay

Requirement How implemented max.
Points

Done by

Playable One level, with labyrinth included from file
through model loader. Basic controls and actions
to move character and overcome obstacles to
win or lose the game.

11 Klaus +
Eva

3D Geometry Model Loader can load all kind of objects. It is
used to load the labyrinth made with blender
(collection of simpler objects), but can also load
“real” 3D. Tested with dose.obj - can be tested by
changing file in modelloader or by changing
name of dose.obj to level1.obj

6 Klaus

Win/Lose Win-Condition through colliding with goal.
Lose-Condition through colliding with
trapdoor/cart/net. Additional lose-condition once
timer runs out.

3 Eva

Intuitive
Controls

Moving with Arrow Keys. Polling for continuous
input. Framerate independence through
calculation of time delta → additional factor in
translation/rotation/jump of camera and
translation of hidden door; also in
position-calculation in compute shader for
particle.

2 Eva

Intuitive
Camera

First person camera, which can be controlled by
the player with arrow keys to move their
character.

2 Eva

Textures Textures are currently applied on trapdoor, goal,
net, walls, cart, candle, candle particle and
hidden wall.

2 Eva

Moving Objects In the game the following objects, provided by
the model loader, can move: cart, net & hidden
door.
The trapdoor is created with rectangles and
moveable as well.

2 Eva

Documentation This document. Code documentation as
comments in source code.

1 Klaus +
Eva

Adjustable
Parameters

Config file from ECG Framework used. Change
of brightness through postprocessing stage with
values ranging from -1 (very dark) to 1 (very
bright).

Sources:
https://learnopengl.com/Advanced-OpenGL/Fram
ebuffers​ (Vertex & Fragment Shader)

http://wes-uoit-comp-graphics.blogspot.com/2013
/04/post-processing-levels-brightness.html
(Brightness calculation as a post-processing
stage)

1 Eva

HUD Used to show timer on the right top corner. Can
be (de)activated with F2.

Sources:
https://learnopengl.com/In-Practice/2D-Game/Re
ndering-Sprites

http://www.mbsoftworks.sk/tutorials/opengl4/009-
orthographic-2D-projection/

4 Eva

 34

Effects

Requirement How implemented max.
Points

Done by

Simple Normal
Mapping

Applied on the walls and hidden wall with a
brick-wall texture. Can be turned on/off with F1

4 Eva

https://learnopengl.com/Advanced-OpenGL/Framebuffers
https://learnopengl.com/Advanced-OpenGL/Framebuffers
http://wes-uoit-comp-graphics.blogspot.com/2013/04/post-processing-levels-brightness.html
http://wes-uoit-comp-graphics.blogspot.com/2013/04/post-processing-levels-brightness.html
https://learnopengl.com/In-Practice/2D-Game/Rendering-Sprites
https://learnopengl.com/In-Practice/2D-Game/Rendering-Sprites
http://www.mbsoftworks.sk/tutorials/opengl4/009-orthographic-2D-projection/
http://www.mbsoftworks.sk/tutorials/opengl4/009-orthographic-2D-projection/

key.

Sources:
https://learnopengl.com/Advanced-Lighting/Nor
mal-Mapping​ (For shader calculation; the
texture.frag from the ECG framework was basis)

GPU Particles
using Compute
Shader

GPU Particle System is used for the candle light.
It uses the compute shader to calculate the
time-to-live and position of the particle. This is
used in combination with a geometry shader ->
vertex shader

Sources:
● http://www.planet-source-code.com/vb/scripts

/ShowCode.asp?txtCodeId=5660&lngWId=3
(Candle light calculation)

● https://github.com/Crisspl/GPU-particle-syste
m​ (Using compute/geometry shaders and
their interaction)

● GPU Particle Systems Slides from
Repetitorium 2018​ (Using
compute/geometry shaders and their
interaction)

12 Eva

Hierarchical
Animation

The cart-object uses hierarchical animation.
When the model is loaded a parent-child
hierarchy is created. Once the animation of the
cart is triggered the parent element starts to
move forward and simultaneously the wheels
rotate.

4 Klaus +
Eva

Lightmaps using
separate
textures

This was a bit tricky because for debugging
reasons we used *.obj which does not support
multiple texture layers. So the level was once
exported with all reusable textures and a second
time with a single lightmap that is used by all
meshes.

Ingame the two *.obj are merged and both
textures with both individual UVs are set for the
shader.

The shader then simply combines the correct
texture and lightmap pixel.

Because we colorized the blender materials of
certain points (as the colors help us for collision
detection) this feature can be checked by
looking on the ground: using the same textures
the colors of certain areas are lit different

8 Klaus

https://learnopengl.com/Advanced-Lighting/Normal-Mapping
https://learnopengl.com/Advanced-Lighting/Normal-Mapping
http://www.planet-source-code.com/vb/scripts/ShowCode.asp?txtCodeId=5660&lngWId=3
http://www.planet-source-code.com/vb/scripts/ShowCode.asp?txtCodeId=5660&lngWId=3
https://github.com/Crisspl/GPU-particle-system
https://github.com/Crisspl/GPU-particle-system

because of the lightmap

 28

Features

Controls
Key Effect

Arrow Keys Forward, back, turning around

Space Jumping

S Trigger

ESC Quit Game

S + Arrow Key “Forward” Fast running

F1 Turn on/off Simple Normal Mapping

F2 Turn on/off HUD

Labyrinth
The Labyrinth is made with blender and essentially contains a 5x5 grid floor, 6x6 grid walls
and 5x5 grid ceiling. Every single Mesh inside the Labyrinth can be removed or added

quickly to ensure a simple way to swap them with other objects (trap doors, doorways
instead of walls, e.g.), making different levels more easy and for adding textures individually
to each Mesh.
(loading Textures with ModelLoader is already working (and can be tested by loading
wuerfel.obj into the game) and Textures are integrated into the level, which use Simple
Normal Mapping.

Camera
First person camera, which can be controlled by the player with arrow keys to move their
character.

Collision Detection
Collision Detection is realized with per-pixel
collision. A compute shader loads the map
(displayed on the right) and reads the color of the
pixel that maps to the players current position. The
shader is provided with the players future position
and overwrites a buffer integer with the enum
representation of the found pixel color. The image is
generated using diffuse colors and orthogonal
projection in Blender. The objects are color-coded
as follows:

● Wall:​ Black
● Trapdoor:​ Magenta
● Net:​ Turquoise
● Goal:​ Green
● Hidden door ​(before animation)​:​ Red
● Hidden door ​(after animation)​:​ Blue

Once the player moves into the green, magenta or turquoise area an event is triggered. The
player is supposed to collide with the walls. The player is supposed to collide with the blue
area ​after the hidden doors animation has been triggered. The player is supposed to collide
with the red area ​before​ the hidden doors animation has been triggered.
Events are triggered as well with an invisible radius. This radius is not displayed on the
map-image and thus not dealt with with the compute shader. Once the camera (princess) is
within the radius an action is triggered. This is implemented for the following objects:

● Hidden door: It is implemented for the area, where the hidden doors animation is
triggered.

● Cart: The princess is not supposed to walk into the cart. If she does, the
lose-condition is triggered. Since the cart moves, a trigger area, that follows the carts
current position, is used.

Illumination

Textures

Gameplay & Instructions

This map shows the placement of all interactable items. It uses the color coding of the
Collision Detection section:

● Trapdoor = magenta
● Net = turquoise
● Hidden door before animation = red
● Hidden door after animation = blue
● Goal = green

The yellow area is not part of the collision detection image. It shows the area where:

● The animation of the wall is triggered
● The cart starts to move in the displayed direction

Trapdoor
Details

● Animated when triggered
● Done by Eva

Instructions to fall into trap
● Walk into trapdoor
● Player falls down (unable to move)
● Game is lost

Instructions to avoid trap
● Stand right before the trapdoor
● Press Space-Key to jump
● Player jumps over trapdoor
● Trap is avoided

Hidden Wall
Details

● Animated when triggered
● Texture with Simple Normal Mapping
● Done by Eva

Instructions to be closed in
● Walk into invisible trigger-area
● Wall closes player in

Instructions to be free again
● Player is closed in
● Press S-Key
● Wall opens up again
● Trap is avoided

Cart
Details

● Animated when triggered
● Hierarchical animation
● Done by Klaus & Eva

Instructions to fall into trap
● Walk into invisible trigger-area
● Cart starts to move
● Player comes into touch with the cart
● Game is lost

Instructions to avoid trap
● Walk into invisible trigger-area
● Cart starts to move
● Player is close to the cart

● Press S-Key
● Player jumps over cart
● Trap is avoided

Net
Details

● Animated when triggered
● Done by Eva

Instructions to fall into trap
● Walk under net (the 1x1 texture on the floor is trigger-area;

net is centered on trigger-area)
● Net falls down
● Game is lost

Instructions to avoid trap
● Stand in front of net
● Press S-Key simultaneously to “Forward” Arrow-Key
● Player starts to run
● Stop once net is behind player
● Trap is avoided

Goal
Details

● Done by Eva
Instructions to win game

● Walk into door
● Game is won

Additional Libraries

GLFW & GLEW
For obvious reasons like managing the window, using vectors and matrices, ...

FreeImage
Loading Textures in Texture.cpp

Assimp
Loading Objects in ModelLoader.cpp - Therefore extracting positions, indices, normals, uvs
and also textures from the file and creating Mesh-Objects that later can be accessed through
the ModelLoader.

Tools

Blender
We used blender to create and export a level containing lots of meshes and simple textures
(that are being reused).
We also used blender for collision detection. Therefore we exported a map showing the
ground and walls colored differently so a position can be matched in 2D.
We then used blender to bake a single lightmap for all meshes. Therefore we had to export a
second level object because the *.obj file format does not support multiple layers.

