

Documentation “Museum Heist”

Marija Markovic 01527717
Georgia Moldovan 01635273

Introduction

Museum Heist is a first-person game, in which the player’s character is a thief that must
roam through a museum in order to steal specific works of art. The game was developed
using Visual Studio, in C++ and OpenGL.

Features

1. Camera
In this game we used a first person camera that can easily be adjusted with the help
of the mouse or the touchpad.

2. 3D Geometry
The 3D Geometry used in the game, such as the museum, the paintings etc., was
modelled in Blender, exported as .obj files and with the help of Assimp imported in
our game. The statues were downloaded from the open-source website
https://free3d.com​ but processed in blender to reduce the number of vertices and
faces. Some objects like the globe, or some pedestals are created with methods
provided in the framework.

3. Win/Lose Condition
The objective of the game, as its name implies, is finding and stealing some pieces of
art. The player must navigate through the museum, which is more or less a maze,
and find some specific objects, but has limited time to do so. If the player finds the
objects before the time runs out, he wins and otherwise he loses.

4. Intuitive Controls
As many other PC games of the first-person genre, the player controls the movement
with the WASD keys and the camera with the help of the mouse (or touchpad).
Interaction with the objects is made possible through the left mouse button. By
pressing the TAB-Key the player can switch into fullscreen mode and by pressing Q
he can turn around at 180°. Bz pressing the B-Key the payer can turn the
bloom-effect on and off. By pressing the + and - signs on the numpad, the player can
accelerate and decelerate his movements speed.
The controls are implemented using polling and the movement of the player is
framerate-independent.

5. Textures
For texturing we used multiple DDS files that were attached to the objects as
‘Materials’ using UV coordinates and vertex and fragment shader.
We made use of the already implemented ‘Texture’ and ‘Material’ classes from the
ECG framework for loading the textures to a specific object.

https://free3d.com/

6. Illumination
For illuminating the scene we used 1 directional light and 12 point lights. The point
lights are placed either in the middle of the room, in order to illuminate more paintings
simultaneously, or above paintings and\or statues. The lights are then passed on as
uniforms to the shader we used for texturing our objects.

7. Moving Objects
Except for the first person camera, our game has a moving globe and the hierarchical
animation. The movement is framerate-independent. Globes rotation speed can be
easily adjusted through a parameter, while the hierarchical animation has a constant,
non adjustable movement speed.

8. 2D Text
We used a 2D text over our 3D scene to display some information that is relevant to
the game, like the timer, some hints regarding the gameplay and the win/lose
notifications, etc. (a very basic HUD). We used an external library called freetype.

9. Additional Libraries: PhysiX, Assimp, Freetype
9.1 ​PhysX
We used the Nvidia PhysX engine for character control, collision detection and
picking objects. We used two collision detection shapes: convex hull and triangle
mesh. Triangle mesh is used for the maze as it is a single object and not an
assemblage of wall box objects. Convex hull shape is used for all other objects.
Capsule controller is used for the camera, and raycasting for picking objects.
9.2 ​Assimp
Assimp is a 3D model import library we use in our game. We have a single method
that we used for loading all models, loadModel in GameObject.cpp
9.3 ​Freetype ​was used to render the 2D Text

Effects

1. Shadow Mapping with PCF
Our game scenery is not well suited for shadow mapping. With one light source, walls
would cast shadows over the museum rooms and objects inside, and that is why we
decided to display shadows only for certain objects. There objects include the statue
of buddha, the statue of a woman, and rotating sphere. For implementation we used
code parts from ​https://learnopengl.com​.

2. Video Textures
Video texture can be seen in the first room on the right side down the hall, on the
right side on the wall. Video texture consists of 5 textures changing themselves in
equal time periods. This switching is framerate independent.

3. Cel Shading

https://learnopengl.com/

Cell shading is to be seen on a couple of objects. Statue of the Easter Island Head
and its pedestal, and the statue of a standing man.

4. Hierarchical Animation
Hierarchical animation consists of a central sphere moving up and down on a thin
cylinder, and four cubes following it are rotating around it.

5. Bloom
We used blur on a rectangle to give the illusion of a window. As mentioned before,
our scene is not made for such effects and it was a little difficult to find a meaningful
way to integrate them in the game. The bloom effect is turned off at the beginning of
the game, and by pressing the B-Key, the user can turn the effect on. For
implementation we used code parts from ​https://learnopengl.com​.

Here is a map of where in our game you can find each effect.

https://learnopengl.com/

