
JAILED IN VR
Fabio Francescato (01526912)
Munteanu-Calen Alin (01528098)

Jailed in Vr is a horror puzzle game set in a first person
perspective. The point of the game is to solve puzzles,
dodge monsters and reach the end of each level to beat it.
The main mechanic was supposed to be the double sight
mode, the normal and the VR one, which hid and revealed
specific objects of the level. Lastly, we reverted to keeping
only one mode due to the underestimated difficulty, time
consumption faced implementing the game, it’s failed
physics and the effects.

Implemented features

Playable game and win condition
For the first submission the document upload had failed so this one will include a resumé of
both submission’s documents.
For the first submission we have implemented a simple gameplay, in the absence of proper
physics a simple puzzle, as in collecting of letters, as well as animations, textures, objects,
level, camera, win condition and other parameters.
For the third submission we have implemented necessary effects and corrected the gameplay a
bit as well as corrected some effect issues that were pointed out, as in made it more stable and
changed the outlook.
The point in the first submission is to have a taste of what the skeleton of the game looks like
and to find all the letters in the level. After having found them, return to the table. The monsters
are roaming around, though no damage will be inflicted.
In the second submission, to the monsters has been added a cel shading look and swinging
fireballs, GPU particle snow is storming and the enter/exit portals of the level have been
included using video texturing. We did not manage to successful implement physix, so the
gameplay has not changed much otherwise.
For the third submission we have added a basic collision system for the walls and the enemies.

To move around use the WASD to move and the mouse to change the direction of it and of the
view.
The puzzle table is to be found at the start of the level in the first room. The letters are split
among all the other rooms in the level.

To collect the letters, simple walk into them (or around them in some problematic cases) and
they will automatically form a encrypted symbol at the table.
Once all the letters will have been found, the message will be displayed at the table.
To finish the level, go back in front of it and the victory message will be shown.
To quit/terminate the exe at any given time, press on ESC.

3D Geometry and Textures
The objects have been modelled in Blender and imported into it using the Assimp library. The
code for the Assimp importer can be found in the namelike method under Geometry.cpp. The
textures were saved as .dds files and imported using the given functions. The entire model
loading and texturing is done in the main.cpp, right before the render while loop.

Moving Objects
The objects are drawn inside the render loop, where the animation also takes place, based on
the framerate. Using translate, rotate and scale and with the help of variables and conditions,
the animations, movement and win conditions are implemented and run in this section.
For the third submission we have made the movement of the objects framerate independent.

Controls and Camera
We have implemented a camera that can look and change the direction of movement in around
the horizontal line of the level. While the current movement is assigned to the usual movement
buttons assigned in many video games (W,A,S,D). The implemented camera and movement
can be found in the ​FPSCamera.cpp​ file. For the second deadline we have made it possible to
look in a 360 rotation.

KEY Effect

W Move forward

S Move backwards

A Move left

D Move right

ESC Exit Game

Adjustable parameters
We have added a full screen mode and brightness multiplier into the existing config file and
implemented those parameters into the game. All of them can be found in the ​main.cpp​ file.

EFFECTS

Hierarchical Animation
We have implemented a fire sphere rotating around the monster in the main room. The fireball
rotates first around it’s own x axis and then around the monster in an y axes, around his center
point, making use of translation and of his actual shifting coordinates to achieve this effect.
The second fireball included is dependent on the first one and both of them give the effect of an
axe swing/sling shot/ disc throwing/launch. The objects have been initialised in ​main.cpp, ​the
animation code can be found in the while loop.

Cel Shading
For the cel shading we have implemented a new shader object (celShader in main.cpp) and
made it render in specific intensity intervals. The enemy models(monsters) are rendered using
the cel shader. Implementation and shader code in ​main.cpp​, ​celShader.vert​ and
celShader.frag.
For the last submission we added a phong lighting method to the celShader, because it wasn’t
enough to be only flat-shaded

Video Textures
Implemented Video Textures using a vector of already existing “dds” files and made it iterate
through that vector, the textures change in regards to dT and a multiplier. Implementation is in
file ​VideoTextures.cpp​ and header implementation of Video Texture is an underclass of
Material.h. ​There are two objects using the video textures in the game, namely the entrance
and exit ‘portals’.
For the last submission we have added more textures (21 textures) and now they act as block
paths.

GPU Particle System using Compute Shader
We have implemented the GPU Particle System using Compute Shader with two separate
shaders, one compute shader and one vertex-geometry-fragment shader. We had to insert a
new constructor into the ​Shader.h​ file for both shaders, because the framework model doesn’t
support those kinds of shaders. The general implementation as well as the draw call is in
GPUParticleSystem.cpp​ and ​GPUParticleSystem.h​ file. The glsl code is in
particleSystem.vert, particleSystem.geom, particleSystem.frag, particleSystem.comp. ​In
the game the particles are represented by the snow particles falling down from the sky.
For the third submission we have made the GPU particle system framerate independent.

