
CG19-Asteroids3D

1/3

3D Asteroid Game
A 3D game developed in C++. The main goal of this game is to reach Earth with the
spaceship and avoid collisions with asteroids.
Player has 10 lives, so if the plane crashes to asteroids, player will lose 1 life. And the player
will be for 2seconds invulnerable.
The spaceship can collects stars to refill the fuel.

First feedback:
Mouse is disabled in the game based on the first feedback.
Bloom effect is corrected.
Playability: The player has to reach the earth to win. Player has 10 lives, if plane crashes to
asteroids, lives will be reduced.

Also Fuel is limited and player can collect stars to refuel.
Run.bat: Game is adjustable through this file. (fullscreen, brightness, etc.)

Legal Notice
The game uses the following libraries:

1. GLEW - MIT (https://github.com/nigels-com/glew#copyright-and-licensing)
2. GLFW - zlib/libpng, a BSD-like license (http://www.glfw.org/license.html)
3. GLM - MIT (http://glm.g-truc.net/copying.txt)
4. tinyobjloader - MIT license (https://github.com/syoyo/tinyobjloader/blob/master/
1. LICENSE)
5. stb_image - public domain (https://github.com/nothings/stb)
6. freetype - FreeType/GNU GPL2 (https://www.freetype.org/license.html)
7. bullet - zlib (https://github.com/bulletphysics/bullet3/blob/master/LICENSE.txt)

The models are from the following sources:

1. star wars spaceship model - https://clara.io/view/c7cf473c-45af-4245-
aa97-308aa1a5dd75

2. pbr materials - https://freepbr.com

Code samples are from:
1. https://learnopengl.com

Game Controls
The spaceship can be controlled with the mouse and the WASD buttons.

- W Forwards

- S Backwards

- D Right

- A Left

- Q Upwards

- E Downwards

CG19-Asteroids3D

2/3

- I move Sun forwards

- K move Sun backwards

- L move Sun right

- J move Sun left

- O move Sun upwards

- U move Sun downwards

- F2 show/hide FPS

- F3 toggle wireframe mode on/off

- F4 toggle collision on/off

- F5 toggle fuel consumption on/off

- F7 toggle bloom on/off

- F8 toggle frustum culling on/off

Requirements
Everything from above in the Legal Notice
Tested with Intel HD Graphics 3300, Intel HD Graphics 4300 and NVIDIA GeForce 820M

Implementation

Effects

Light mapping
For light mapping, I chose to use the nowadays really popular physically based rendering
(PBR) method. In PBR, one of the properties to use during the fragment shader stage is an
ambient occlusion (AO) texture. This AO texture shades parts of the object based on the
vertices' texture coordinates and thus maps lighting on the surface of the object.
All object are illuminated by the „Sun” which is an invisible point light source at the point
(100, 100, 10).

Physics Engine
For the physics engine I used the open source ~bullet~ physics engine for collision detection
and animation of the asteroids. The ship and asteroids are the only objects that could collide
with each other, the stars and Earth couldn't. The asteroids have bounding spheres while the
spaceship has bounding box for collision detection.
To animate the asteroids, I apply a torque impulse on the object, which rotates it around its
axis, and then with every iteration of the game I get the current rotation quaternion from the
engine.

Heads-up Display
The Heads-up Display (HUD) is handled by rendering text with the freetype open source
library.

GPU Particle System
The GPU particles have position and random velocity attributes. OpenGL transform feedback
is used to get back the updated position attributes of the particles.

CG19-Asteroids3D

3/3

Bloom
RGB values above a given threshold are captured in a separate framebuffer. Gaussian blur
is applied on that framebuffer and the HDR and blurred images are combined to make the
Bloom effect visually appealing.

Loading Complex Objects From File
The game uses the tiny-obj-loader open source library, which has a single file header-only
implementation. It can be easily integrated with projects this way and could load .obj and .mtl
files. To import textures I used stb-image. which is again a single file header-only library.
For every model I defined it's buffers, a vertex array object and vertex buffer objects for
position, normal and texture coordinates. These buffer objects are used for rendering the
models.

Animation Using Physics Engine
Only the asteroids are animated. Using the bullet physics engine a torque impulse is applied
on creation of the asteroid, and for each iteration the current rotation is queried from the
physics engine, and is applied to the MVP matrix when rendering the object.

View-Frustum Culling
Simple 3D geometry is used to calculate which object falls within the view pyramid. This is
done by calculating four direction vectors (four corners of the screen / camera). By knowing
these directions, one could detemine the planes that defines the view frustum, and thus
calculate whether an object is inside the pyramid the camera can see. The frustum culling
function also calculates the distance from the planes, and if the distance is less than the
radius of the object's bounding sphere, or the object falls inside the pyramid, the program
renders the object.
Also, a simple 3D vector calculation gives back which object falls behind the camera,
eliminating unnecessary calculations for the frustum culling. This is done by a dot product of
the camera front vector and the camera-to-object vector. If the dot product is negative,
meaning the angle between the vectors is greater than 90 degrees, the object is behind the
camera.

Debug Options
F3 enables wireframe, which is a simple OpenGL call.
F4 collision can be on/off.
With F7 bloom can be enabled. This is done by specifying the framebuffer that is being used
and by limiting the number of blurring iterations on the bloom image.
Frustum culling can be enabled/disabled by pressing F8.

