
 

 
Submission 2 documentation 

 
 
 

Stage Fighter 
The Lost Warrior 

 
 
 

Raphael Ludwig 01526280 

Daniel Fangl 01526097 

 



 
Submission 1 documentation 
Stage Fighter - The Lost Warrior 

 

Controls 
The game does use intuitive controls which are used by most of the first person games 
available. The character can be navigated around the map with W,A,S,D. To damage 
enemies the Left Mouse Button is used. The enemies only take damage if the player does 
touch them. 
 

Key Effect 

Mouse  Look around 

W,A,S,D  Movement 

Space  Jump 

Left Mouse Button Attack 

Right Mouse Button Block projectiles 

ESC Game Menu 

F1 Ingame Help 

F2 FPS Counter 

F11 Reload Shaders 

Development Status 

Requirements 

Freely movable camera 
With the help of GLM the perspective and view matrices are calculated each time the player 
does move the mouse and therefore set new values to the yaw and pitch of the camera. 
These matrices are then send to the shader as P and V and for each object they do get 
multiplied with the model matrix and the position of the model which produces a freely 
movable camera. Since the camera is attached to a Bullet rigid body (the player) movements 
with W,A,S,D are restricted to the rules of the physical bullet world. 
 

Moving objects 
Each object which is rendered in OpenGL is also represented in Bullet, therefore the 
moveable objects, which are rigid bodies in bullet, do set their coordinates from the bullet 
coordinates each render tick. Besides the enemies the projectiles which are shoot from them 

Page 2 / 6 



 
Submission 1 documentation 
Stage Fighter - The Lost Warrior 

 

are also rigid bodies and do fly to a position on which the player stood when they were 
spawned into the world.  
 

Texture Mapping 
Besides two hardcoded objects (Cube and Triangle) which also have hardcoded texture 
coordinates all models are loaded from the .gltf files. All these files which are used in the 
game do contain UV coordinates which are exported by Blender. The texture coordinates 
are stored into a VBO after the file has been loaded and are used in the shader as 
textcoord_0 since that is the name under which the gltf file format does save them.  
 

Simple lighting and materials 
All objects in the current game do have textures and have a material assigned which is 
imported from the .gltf file. Since the gltf format specifies the material as PBR material some 
properties of the material are hardcoded into the phong shader.  
A single point light source is used which is placed in the middle of the map. This light source 
does define the ambient, diffuse, specular light color and the power of the light. All normal 
vectors are taken from the .gltf file since Blender does export these for each model. 
 

Controls 
For the Controls polling and callbacks are used. Inputs like for the character movement 
which are applied every frame are polled with ​glfwGetKey(...)​  to ensure that the exact state 
is captured with the frame. Other inputs like pressing ​ESC​ , ​F1 ​ or ​F2 ​ do use the callbacks 
since it is not important when the key was pressed but that they state change of the key did 
occur. The Window class does interface with GLFW and does provide functionality for key 
polling and registering callback listeners which will be executed at the beginning of each 
frame. 
 

Basic Gameplay 
The goal of the game is to eliminate all opponents, while facing (at the moment not so 
heavy) fire of them. You have to evade those bullets (or they will slowly eat your health, 
these bastards), and hit the turrets with your sword (which is at the moment suspect to your 
imagination). Some controls and a little gameplay do get explained in the “Tutorial” Level.  
 

Page 3 / 6 



 
Submission 1 documentation 
Stage Fighter - The Lost Warrior 

 

 

Additional Features 

Complex Model loading 
With the library “tinygltf” the .gltf model files are loaded into the game engine when they are 
needed by a Level. These models can contain complex meshes as for example the 
Coliseum or Houses which are used through the levels, but also can contain with keyframe 
animated meshes. Animation is supported by specifying a start frame time and a end frame 
time. In favor for CPU Particles very complex .gltf files which could contain multiple meshes 
or even Scene are no longer supported and used as in the first Submission. 
 

Map loading with Scripting language 
The map file and basic entity and object properties are saved as .lua files and can be parsed 
by the Lua Scripting Engine. Therefore the map can be modified without recompiling the 
executable. Nearly every object or entity which does exist in game is scripted. These scripts 
are stored in a separate folder to hide the complexity of such an object from the level file. 
With the lua function “dofile(...)” these files are included in the map file and can be used. 
Besides object and entity definitions also AI behavior and particle generation are scripted in 
lua. 
 

GUI 
The UI in the current game consists of the health and shield indicator in the bottom left 
corner of the screen, the “Victory!” and “Game Over” message displayed in white letters 
across the screen when the game ends are rendered with a custom font shader which uses 
a texture atlas generated from freetype2 glyph data. The game menu, accessible by 
pressing the Esc key while the game runs, which can be used to alter light settings like 
ambient, gamma settings and an option to end the game is created with the nuklear library. 
With the help of nuklear parts of the main screen and the textboxes where implemented. 
 

Effects 

Points Effect Status 

0,5 Cel Shading Implemented 

0,5 + Contours (Backfaces) Implemented 

1 Procedural Textures Implemented (Marble Texture) 

Page 4 / 6 



 
Submission 1 documentation 
Stage Fighter - The Lost Warrior 

 

1 GPU - Particle System (Compute Shader) Implemented 

1 Scripting Language Implemented 

0,5 CPU Particles (Instancing) Implemented 

0,5 Lightmap from different Files Implemented 

 
● Cel Shading / Contours​: Both implemented, but hard to spot. Backfaces shadows 

seem to be disconnected sometimes. Backfaces are implemented via a additional 
shader, resizing the backfaces and coloring them black. 

● Procedural Textures​: The marble texture is procedurally generated at game startup. 
Due the high startup time the generation of the texture is happening in a background 
to avoid various issues with non responding windows. Generated using a perlin noise 
with matching parameters. 

● GPU Particle System​: Flames and Smoke of Burning objects. The creation of these 
particles, as already mentioned are scripted in lua. These particles get generated 
with fixed number and velocity and than are uploaded to the GPU for computation. 
The corresponding shader does create a geometry from the point list and uses 
multiple textures to get a nice looking fading effect. 

● Scripting Language​: Lua is used to define the objects, position and their behavior. 
But also to define the map, and even a list of shaders the objects should be rendered 
with! Fancy! The lua scripts to load are all mentioned in the index.lua file, then each 
file is loaded, the elements are then built intto c++ lua objects, which then create the 
final c++ objects the game operates with. 

● CPU Particles​: The projectiles which are spawned by turrets are cpu particles 
because they get all simulated by bullet and are needed for collisions. Are simulated 
by bullet. 

● Lightmap from different files​: Is possible, can also be added via a lua script which 
gives us the possibility to load multiple instances of a object with different lightmaps 
attached. The lightmap is then used in the fragment shader to create the final image. 

Tools 
● Blender:​ Blender was used for the creation, painting and editing of the 3D-Models 

used by the game. 
● Gimp:​ Gimp was used for the creation of simple placeholder graphics up to the 

editing of the painted textured of blender to the creation of the HUD graphics. 
● CLion / Visual Studio: ​Where used as IDEs to write Code, compile & debug the 

Game. Visual Studio was mostly used for its compiler. 

Page 5 / 6 



 
Submission 1 documentation 
Stage Fighter - The Lost Warrior 

 

Libraries 
Name Description Link 

GLFW Platform-independent API for creating 
windows https://github.com/glfw/glfw 

GLAD 
Multi-Language GL / GLES / EGL / GLX / 

WGL Loader-Generator http://glad.dav1d.de/ 

GLM OpenGL Mathematics Library https://github.com/g-truc/glm 

kaguya Kaguya is a Lua binding library for C++ https://github.com/satoren/ka
guya 

Lua LUA Scripting Language https://github.com/lua/lua 

nuklear Nuklear is a immediate mode graphical user 
interface toolkit without a renderer 

https://github.com/vurtun/nukl
ear 

spdlog Header only C++ Logging Library https://github.com/gabime/spd
log 

stb_image Header only Image loading Library https://github.com/nothings/st
b/ 

tinygltf gltf Loading Library https://github.com/syoyo/tinyg
ltf 

freetype2 Font Library https://www.freetype.org/ 

bullet3 Bullet Physics Library https://github.com/bulletphysi
cs/bullet3  

   

 

Page 6 / 6 

https://github.com/glfw/glfw
http://glad.dav1d.de/
https://github.com/g-truc/glm
https://github.com/satoren/kaguya
https://github.com/satoren/kaguya
https://github.com/lua/lua
https://github.com/vurtun/nuklear
https://github.com/vurtun/nuklear
https://github.com/gabime/spdlog
https://github.com/gabime/spdlog
https://github.com/nothings/stb/
https://github.com/nothings/stb/
https://github.com/syoyo/tinygltf
https://github.com/syoyo/tinygltf
https://www.freetype.org/
https://github.com/bulletphysics/bullet3
https://github.com/bulletphysics/bullet3

