

Patrick Gantner – 01576033

Marcus Auer - 01329169

Parkour Platformer
Submission 2

Gameplay
The player can run around in the level and jump over or crouch under obstacles. If the player
can keep up a smooth movement (e.g. no abrupt turns or stopping) the movement speed will
gradually increase until the maximum movement speed is reached. Turning by more than a
threshold angle, falling and crouching will reduce the movement speed again.
The goal is to reach the top of the highest cube.

Controls

Action Key Type

Move Forward W Polling

Move Back S Polling

Move Left A Polling

Move Right D Polling

Jump Spacebar Polling

Crouching Left Control Polling

Exit Game ESC Call-back

Toggle Wireframe F1 Call-back

Toggle V-Sync F10 Call-back

Toggle Fullscreen F11 Call-back

Patrick Gantner – 01576033

Marcus Auer - 01329169

Effects

Head Up Display
The status of the game is displayed on the Head up Display. It is implemented with the help
of ​https://learnopengl.com/In-Practice/Text-Rendering​ and uses the library “Freetype”.

Procedural Texture
The level is covered by a procedural cloud texture (1 Effect-Point by Marcus Auer)
Reference: ​https://thebookofshaders.com/11/

Video Texture
On the first obstacle is a video displayed. It is decoded via FFMPEG and the implementation
is based on ​https://gist.github.com/rcolinray/7552384​. (1 Effect-Point by Marcus Auer)

CPU Particle System
Particles are generated and simulated on the CPU and drawn via Instanced Rendering.
Implementation based on
http://www.opengl-tutorial.org/intermediate-tutorials/billboards-particles/particles-instancing​ (
0.5 Effect-Points by Patrick Gantner)

Physics Engine
Nvidia PhysX is used for the collision detection and gravity.

Lighting
A directional and point light source are used to illuminate the whole scene. The shadows are
generated via shadow mapping. Implementation loosely based on
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping​ (1.5
Effect-Points by Patrick Gantner). The lightmap is generated on startup for all static
geometry. The shadowmap is only used for dynamic objects.

https://learnopengl.com/In-Practice/Text-Rendering
https://thebookofshaders.com/11/
https://gist.github.com/rcolinray/7552384
http://www.opengl-tutorial.org/intermediate-tutorials/billboards-particles/particles-instancing
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/

Patrick Gantner – 01576033

Marcus Auer - 01329169

Adjustable Parameters
Parameters for our Game can be set by changing the settings.ini file in the same folder as
the executable. This file is read upon starting the application and follows the default ini
schema. For reading the file an external (header only) library is used. The settings are stored
in a shared Class which takes care of returning default values if no settings file is loaded or
some settings are missing from the settings.ini file.
Short description of implementation for these parameters:

● • Resolution Width and Height are read from settings.ini and passed to the
glfwCreateWindow function (please note that for Fullscreen currently the monitors
default resolution is used. This may change in the future)

● • Fullscreen If Fullscreen is enabled the primary monitor is passed to
glfwCreateWindow function. Note: If using fullscreen the resolution setting is ignored,
and the monitors native resolution is used.

● • Refresh-Rate The refresh rate is set by using
glfwWindowHint(GLFW_REFRESH_RATE, …) and reading the value from the
settings.ini file

● • Brightness The brightness value in settings.ini is a factor for the output brightness.
A factor of 1.0 will result in the original brightness, whereas a smaller will make the
scene darker and a higher value brighter. Currently the brightness factor is simply
multiplied to the resulting colour from the texture shader.

3rd Party Libraries
● GLFW - ​http://www.glfw.org/
● GLEW -​ http://glew.sourceforge.net/
● GLM – Math library

https://glm.g-truc.net/0.9.8/index.html
● FreeImage – Image loading for textures

http://freeimage.sourceforge.net/
● NVidia PhysX – Physics simulation (Collision detection, movement…)

https://github.com/NVIDIAGameWorks/PhysX-3.4
● Assimp – Asset loading

https://github.com/assimp/assimp
● Simpleini – Reading of settings.ini

https://github.com/brofield/simpleini
● FFMPEG – Decode Video

https://ffmpeg.zeranoe.com/builds/
● FreeType - Text Overlay

https://www.freetype.org/

http://www.glfw.org/
http://glew.sourceforge.net/
https://glm.g-truc.net/0.9.8/index.html
http://freeimage.sourceforge.net/
https://github.com/NVIDIAGameWorks/PhysX-3.4
https://github.com/assimp/assimp
https://github.com/brofield/simpleini
https://ffmpeg.zeranoe.com/builds/
https://www.freetype.org/

