
Andreas Brunner
Thorsten Korpitsch

Starman Documentation

Implementierung (Compulsory)

● HUD
The HUD was implemented using Freetype.

● Light Mapping (+ Textures)
A lightmap was baked in Blender for a static object and is combined with the diffuse
texture during runtime.

● Physics Engine
Bullet-Physics is used as Physics Engine.

● Frustum Culling
The frustration of culling is realized by means of bounding spheres.

● Hierarchical Animation
Around the pickups (yellow + euro) a smaller version of the pickup is moving around
them. (They get the translation, etc. from the big pickup that you can catch and have
their own transformation around their parent).

● Complex Models from Files
Models created with blender are loaded with the assimp framework.

● Animation via Physics Engine
All objects are moved via physics, the transformation/rotation values are extracted
from the World transformation and used for drawing.

Features
In the game you can fly around with the spaceship, trying to avoid colliding with asteroids,
picking up the yellow euro pickups for additional points (and health) and shoot down the
white enemies. You can also ram into enemies, but this will cost you health points. If you
crash into an asteroid it is over. If you drop below 0 health points the game is over too.
You win when all enemies are destroyed.

Lightning
The game is lighted with 1 Sun. All objects are colored from textures.

Additional Libraries

● Assimp
● Freetype
● BulletPhysics

Effects

● Lightmapping (+ Texture) 0.5 Points
● GPU Particle System (Compute Shader) 1.0 Points
● Cell Shading + Contours (Edge Detection) 1.5 Points

Andreas Brunner
Thorsten Korpitsch

● Procedural Generated Textures 1.0 Points

Lightmapping (+ Texture)
Reference: Repetitorium Slides 2018

The textures were baked with blender into a seperate texture. At runtime both textures are
loaded into the shader and combined there.

GPU Particle System (Compute Shader)
Reference: Repetitorium Slides 2018

We followed the instructions of the slides, as well as the tips of our tutors.
Shader-Buffer-Objects for Position and Velocity are created and filled with the data of 2 initial
particles.
The compute Shader is updating and spawning particles and returning the new values to the
ping-pong Shader-Buffer-Objects (which are used for input and output alternating).

A geometry Shader is used to spawn vertices at the position of the particles. The Vertex
shader is basically a pass through shader. The fragment shader then colors the “particle”
through a texture.

Cell Shading + Contours (Edge Detection)
Reference: https://raptor.developpez.com/tutorial/rendering/celshading/
Reference: https://en.wikipedia.org/wiki/Cel_shading

The cell shading clamps the light values to 4 different stages. It happens directly in the
shader used to draw the colors of the objects. When the Phong calculation is done, the
values get adjusted if cell shading is enabled. For the Contours the the colors and depths
are rendered into a Framebuffer, which we use for post processing. A Sobel filter is used on
the depth map, revealing edges. The edges are then combined with the color value resulting
in outlines of objects.

All objects except for the space station are cell shaded and contour shaded. The station is
only contour shaded.

Procedural Generated Textures
Reference: https://solarianprogrammer.com/2012/07/18/perlin-noise-cpp-11/

A perlin noise function is used to generate a texture. The texture is then used to color
asteroids.

Models

https://raptor.developpez.com/tutorial/rendering/celshading/
https://solarianprogrammer.com/2012/07/18/perlin-noise-cpp-11/

Andreas Brunner
Thorsten Korpitsch

Models and Textures were created by ourselves in Blender.

Controls

● Escape - Closes the game
● F2 - enables/disables Debug-Mode
● F3 - enables/disables Wire-Frame-Mode
● F6 - enables/disables Cell-Shading
● F7 - enables/disables Post-processing (Contour Shading)
● F8 - enables/disables Face-Culling
● F9 - enables/disables debug camera (switch from player view to debug camera or

back again)
● F10 - enables/disables Frustum Culling

Player Controls:

● W, S - Accelerate/Decelerate
● A, D - Strafe left/right
● Left-Click/Right-Click - Shoot with left/right weapons
● Mouse-Movement - Change Direction (look around)

Debug Camera Controls:

● W, A, S, D - Move forward/backward/left/right
● Mouse-Movement - Look around

