
Savey Spacey Kami & Ka(t)ze

CGUE 2018 Submission 2
Max Dorfmann (00926889) & Valerie Riegler (01326794)

.. is a space action game where the player has to guide a spacecraft through a tunnel full of
asteroid obstacles.

Technical Description

Begin to play the game by double clicking on ​Savey_Spacey_Kami_Ka(t)ze.exe​.

Adjustable parameters (as in Submission 1)
You can set the screen resolution (​width & ​height​ in px), fullscreen-mode (​fullscreen​ [true,false]),
refresh-rate (​targetfrefreshrate in frames per second) and brightness (​brightnessmultiplier as float
value) in assets/settings.in before starting the game.

Gameplay
The player has to maneuver a spacecraft through a tunnel full of asteroids in order to save the
cats that are trapped in a billboard on a mystical planet by the other end of the tunnel. But
careful, if the spacecraft collides with the asteroids, they would explode and shower the
spacecraft in scary confetti particles :(
The spacecraft can only survive the confetti showers 5 times.

Controls / Debug Options
A, D - to move the spacecraft left or right
W, S - to move the spacecraft forward or backward
mouse - to control the orientation (yaw & pitch) of the camera / player
O - switch to freely movable debug camera (without following the spacecraft, no collisions)
P - switch to play mode with momentum in z-direction (intended for playing)
I - switch to play mode without momentum (default at start, no stress when testing e.g confetti
explosions)
(F1 - help if available - not needed here)
F2 - Frame Time / Performance Output on/off
F3 - Wire Frame on/off
F4 - HUD on/off
F5 - Simple normal mapping on/off
F8 - View-frustum Culling on/off
Esc - to quit the game

Freely movable camera
Using the controls for moving the spacecraft (WASD and mouse) the player can freely move the
spacecraft (followed by the camera) in “I”-mode or the debug camera (“O”-mode on its own) in all
directions. The play mode (“P”) restricts the freedom of movement by adding a momentum in
z-direction (forwards).

Complex 3D Models from Files
We used the assimp-library to import complex 3D models from .obj files with their corresponding
texture in .dds files following the tutorials listed in our References.
We obtained the free 3D models from:

Meteor: ​https://www.turbosquid.com/3d-models/obj-free/927712
Spaceship: ​https://www.turbosquid.com/3d-models/free-space---3d-model/531813

Moving objects / Hierarchical animation using PhysX
The spacecraft moves controlled by the player with the camera following it (attached as a child
with an offset position of the spacecraft).
Some of the asteroids move automatically back and forth to make the gameplay harder. When
they collide with each other they would bounce apart depending on the direction of the impact
momentum. The mystical planet and the billboard spin hierarchically together.
Movement and collision detection is handled by the PhysX-API.

View Frustum Culling
We implemented simple view frustum culling using the geometric approach. The
implementation can be found Frustum.cpp. We use bounding spheres around each object.
Before the rendering of our nodes, our program checks whether the bounding sphere of an
object is either completely inside the view frustum or intersects with it. If so, the object is
getting rendered.

Texture mapping (as in Submission 1)
All objects in our game are either created using the provided GeometryData-methods in
Geometry.cpp or are imported using the assimp-library (see Objectloader.cpp for implementation
details). In both cases the geometric shapes are created with respective texture coordinates.
Furthermore we use the ​Texture​ class to load and attach textures to our objects.

Lighting and materials
We use the provided light implementation from the ECG-Framework. We only have one
point-light-source which is positioned on x=-500,y=0,z=0 and should simulate a nearby star.
Each object has a material as well as normal vectors, which are either created in the Geometry
class or are directly imported using assimp.

https://www.turbosquid.com/3d-models/obj-free/927712

Effects

(Compulsory: Light Mapping)

in our first feedback we were advised to choose a different effect worth 1 point instead of
light mapping as there are not many static objects in our scene. So our total of effect
points is 5.

Compulsory: Heads-Up-Display
for our HUD we used this tutorial ​https://learnopengl.com/In-Practice/Text-Rendering We
included a free font called Atarian ​https://www.dafont.com/atarian-system.font and added a
second font to illustrate our hearts ​https://www.dafont.com/heart-shapes.font​. The HUD
showes the remaining lives (hearts) and a message of what the goal of the game is.

Compulsory: Physics engine
The Physics engine has already been included for Submission 1 and is used for
movement and collision detection of the tunnel, spacecraft and asteroids. It was
implemented following this manual ​https://docs.nvidia.com/gameworks/content/
gameworkslibrary/physx/guide/Manual/Index.html​.

1 P GPU-Particle System (+Compute Shader, Instancing)
The particle system is used to illustrate asteroids that burst into confetti particles when
destroyed. We used the tutorials provided by the LVA for the Compute Shader and the
Vert → Geom → Frag - Shaders that draw the quads. (​https://tuwel.tuwien.ac.at/
pluginfile.php/1025327/mod_page/content/26/ComputeShader_SS18.pdf and ​https://tuwel.
tuwien.ac.at/pluginfile.php/1025327/mod_page/content/26/GPU_Particles_SS18.pdf​) Instancing
was added as described in ​https://learnopengl.com/Advanced-OpenGL/Instancing

1 P Procedural Textures
We applied a procedural texture on the ‘mystical planet’ on the other side of the tunnel.
The planet texture is randomly generated at runtime. Basically we use a simple brownian
motion approach using perlin noise (see
https://github.com/sol-prog/Perlin_Noise/blob/master/PerlinNoise.cpp​). The implementation is
a potpourri of several sources like ​https://thebookofshaders.com/13/​,
http://flafla2.github.io/2014/08/09/perlinnoise.html or
https://lodev.org/cgtutor/randomnoise.html​, to name a few.

1 P Video Textures
On the above-mentioned ‘mystical planet’ there is a giant billboard that shows our
trapped cats in this video: ​https://www.youtube.com/watch?v=J7UwSVsiwzI ​(it was also
inspiration for our game). ​The video is getting processed using ffmpeg/libav
(​https://ffmpeg.zeranoe.com/builds/​). Furthermore we ported a wrapper found on github
(​https://github.com/datenwolf/aveasy​) to work with a newer version of ffmpeg/libav. The
wrapper facilitates the reading of single consecutive video frames, which then are used
as texture-images​.

1 P (Normal) Normal Mapping
As our objects are not planar, and normal mapping therefore becomes more complex
because of the calculation of the normals in object space, we were offered 1P instead of
0.5P for this effect. We had to introduce two further VBO’s per object - the so called
tangents and bitangents - which then can be used to calculate the normals in object
space. Tangents and bitangents are either generated by the objectloader, or - in case of
primitive objects created at runtime - are calculated during the creation of a
Geometry-object. The implementation was inspired by

https://learnopengl.com/In-Practice/Text-Rendering
https://www.dafont.com/atarian-system.font
https://www.dafont.com/heart-shapes.font
https://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/guide/Manual/Index.html
https://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/guide/Manual/Index.html
https://tuwel.tuwien.ac.at/pluginfile.php/1025327/mod_page/content/26/ComputeShader_SS18.pdf
https://tuwel.tuwien.ac.at/pluginfile.php/1025327/mod_page/content/26/ComputeShader_SS18.pdf
https://tuwel.tuwien.ac.at/pluginfile.php/1025327/mod_page/content/26/GPU_Particles_SS18.pdf
https://tuwel.tuwien.ac.at/pluginfile.php/1025327/mod_page/content/26/GPU_Particles_SS18.pdf
https://github.com/sol-prog/Perlin_Noise/blob/master/PerlinNoise.cpp
https://thebookofshaders.com/13/
http://flafla2.github.io/2014/08/09/perlinnoise.html
https://lodev.org/cgtutor/randomnoise.html
https://www.youtube.com/watch?v=J7UwSVsiwzI
https://ffmpeg.zeranoe.com/builds/
https://github.com/datenwolf/aveasy

http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-13-normal-mapping/ and
https://learnopengl.com/Advanced-Lighting/Normal-Mapping​. The effect can be seen on the
asteroids and the space ship as they received realistically shaped indentations.

0.5 P ​Cel Shading
Cel shading was used on the spaceship and the meteors and was implemented following
https://www.youtube.com/watch?v=dzItGHyteng

0.5 P + Contours (backfaces)
The contours were analogue to the cel shading also applied to the spaceship and the
meteors to achieve a comic style look to our not so serious surreal game. This tutorial
guided the implementation for the backface contours
http://www.sunandblackcat.com/tipFullView.php?l=eng&topicid=15&topic=Cel-Shading​.
(Cel Shading and backfaces were not applied to the planet and the video as this would
mask/obscure the procedural textures and the video)

5 P

Some screenshots to illustrate our effects:

(first row from left to right)
The first image gives a general overview of what our game looks like. You can see the spaceship
and the tunnel with the asteroids inside. The asteroids and the spaceship have a purple contour.
Through the transparent tunnel the mystical planet with the video billboard is visible.
The second image shows an exploding asteroid with it’s colorful confetti particles.

(second row from left to right)
The first image shows the planet with the procedural texture and the video billboard.
In the second image shows the close-up of an asteroids displaying the cel shading effect.
Last but not least the third image shows two asteroids side by side, one with normal mapping
one without (without cel shading).

http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-13-normal-mapping/
https://learnopengl.com/Advanced-Lighting/Normal-Mapping
https://www.youtube.com/watch?v=dzItGHyteng
http://www.sunandblackcat.com/tipFullView.php?l=eng&topicid=15&topic=Cel-Shading

Additional libraries ​including references - fehlt noch was?
In addition to the libraries that were already used in the ECG Framework we included

- assimp to import models
- PhysX to handle collisions, movement and triggering.
- freetype
- FFMPEG/Libav
- stb_image

See references below.

References
We extended the ​ECG Framework​, using amongst others it’s texture mapping, lighting and material
implementations
Frustum Culling:

https://github.com/gametutorials/tutorials/blob/master/OpenGL/Frustum%20Culling/Frustum.cpp
Camera:

https://learnopengl.com/Getting-started/Camera​ guided us for implementing the camera
Assimp model loading:

http://www.opengl-tutorial.org/beginners-tutorials/tutorial-7-model-loading/
Spaceship model: ​https://www.turbosquid.com/3d-models/free-space---3d-model/531813
Meteor model: ​https://www.turbosquid.com/3d-models/obj-free/927712

PhysX:
https://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/guide/Manual/Index.html
and Krishna Kumar (2013), ​Learning Physics Modeling with PhysX​ was used to
implement functionality using PhysX.

HUD:
https://learnopengl.com/In-Practice/Text-Rendering
Font Atarian ​https://www.dafont.com/atarian-system.font
Font for hearts ​https://www.dafont.com/heart-shapes.font

GPU Particle System:
LVA Folien: ​https://tuwel.tuwien.ac.at/pluginfile.php/1025327/mod_page/content/26/
ComputeShader_SS18.pdf​ and ​https://tuwel.tuwien.ac.at/pluginfile.php/1025327/mod_page/
content/26/GPU_Particles_SS18.pdf​)
+Instancing ​https://learnopengl.com/Advanced-OpenGL/Instancing

https://github.com/gametutorials/tutorials/blob/master/OpenGL/Frustum%20Culling/Frustum.cpp
https://www.turbosquid.com/3d-models/obj-free/927712
https://docs.nvidia.com/gameworks/content/gameworkslibrary/physx/guide/Manual/Index.html
https://learnopengl.com/In-Practice/Text-Rendering
https://www.dafont.com/atarian-system.font
https://www.dafont.com/heart-shapes.font
https://tuwel.tuwien.ac.at/pluginfile.php/1025327/mod_page/content/26/ComputeShader_SS18.pdf
https://tuwel.tuwien.ac.at/pluginfile.php/1025327/mod_page/content/26/ComputeShader_SS18.pdf
https://tuwel.tuwien.ac.at/pluginfile.php/1025327/mod_page/content/26/GPU_Particles_SS18.pdf
https://tuwel.tuwien.ac.at/pluginfile.php/1025327/mod_page/content/26/GPU_Particles_SS18.pdf

Procedural textures:
https://github.com/sol-prog/Perlin_Noise/blob/master/PerlinNoise.cpp
https://thebookofshaders.com/13/
http://flafla2.github.io/2014/08/09/perlinnoise.html
https://lodev.org/cgtutor/randomnoise.html

Video texture:
https://github.com/datenwolf/aveasy

FFMPEG/Libav
https://ffmpeg.zeranoe.com/builds/

stb_image
https://github.com/nothings/stb/blob/master/stb_image.h

(Normal) normal mapping:
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-13-normal-mapping/
https://learnopengl.com/Advanced-Lighting/Normal-Mapping

Cel shading:
https://www.youtube.com/watch?v=dzItGHyteng

+ Contours (backfaces):
http://www.sunandblackcat.com/tipFullView.php?l=eng&topicid=15&topic=Cel-Shading

https://github.com/sol-prog/Perlin_Noise/blob/master/PerlinNoise.cpp
https://thebookofshaders.com/13/
http://flafla2.github.io/2014/08/09/perlinnoise.html
https://lodev.org/cgtutor/randomnoise.html
https://github.com/datenwolf/aveasy
https://ffmpeg.zeranoe.com/builds/
https://github.com/nothings/stb/blob/master/stb_image.h
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-13-normal-mapping/
https://learnopengl.com/Advanced-Lighting/Normal-Mapping
https://www.youtube.com/watch?v=dzItGHyteng
http://www.sunandblackcat.com/tipFullView.php?l=eng&topicid=15&topic=Cel-Shading

