
Submission 2

BoozeWars
Patrick Link (11728332)
Carlos Rodriguez (1635311)

Implementation
In general we tried to implement our game object oriented and well structured. With object
for each element in our gameplay, which saves its attributes, behaviours and model. The
main file is responsible of the game logic. The scene and its entities are controlled in a
separate class.

Free Movable Camera
We provide a free movable camera which is essential for our gameplay. The camera can be
moved at all time in the game. The rotation matrix is derived from quaternions.

Moving Objects
We provide a wave of enemies which start to move once the game has been started. They
move from the start of the street to the end. The wave can be easily parametrized, by giving
the number of enemies, the time delay between enemy spawns and the delay between
waves. One can even define multiple waves. The enemies are controlled by the physx
engine, as described below.

The barrels rotate and translate, so it looks like they are rolling. Once their life time is over,
they scale till they disappear.

Texture Mapping
Each of our object has its own texture. The sky and the map have customized textures. We
use mipmaps and bilinear filters for the enemy and building objects. We choose the nearest
mipmap level and bilinear interpolation of the texture.
For the skybox with used cubemap textures.

Text Loading
We use freetype to load and display text in the view.

Object Loading
By using assimp we load the models and its meshes and save the template parts for each.
When calling draw we iterate through the meshes and display them. The meshes are loaded

from a .obj file while the meshes and the textures are connected by a .mtl file. The textures
are images.

Every Object is loaded in the ObjectFactory which instantiates once in a programs life time
(Singleton). This Factory creates all objects in its constructor and hands it to the game if
required.

Loaded objects are:

- Buildings (saloon)
- Weapons (Barrels)
- School
- Street Light
- Enemies (bottle and beer glass)

Shadow Mapping
We implemented shadow mapping for the directional light. The scene is first rendered from
the point of view of the light, we take the middle of the map and use orthonormal projection
in direction of the light. The depth values are then saved in a texture. This texture is then
used in the next pass along with the coordinates with respect to the light to determine if a
fragment is in a shadow or not. We sample 4 points and take the average so that the
shadow has a smoother appearance. The shadow pass is done with front face culling to
reduce shadow acne.

Physx Engine
The enemies are controlled by the physx engine. A driving force pulls the enemy in direction
of the goal. Moreover one can place walls in the way, which are implemented as static rigid
bodies. One type of enemy casts three rays and uses the collision information to find a path,
the second type casts one ray, and if it collides with an obstacle it jumps over it. This is all
implemented with forces and impulses.

Effects

CPU-Particle System
We generate 500 particles for each weapon (barrel), which spread randomly in all direction,
once the barrel destroys, which creates a hierarchical animation.. The direction is
determined by a randomly chosen point on the sphere, parametrized by standard spherical
coordinates. Their opacity gets less depending on the time and they die once the opacity is 0
or their time to life is over. We used instanced drawing to render the particles.

Light mapping
We implemented light mapping using a seperate texture holding the light information, which
was calculated using blender. Unfortunately as our scene is very dynamic, we can’t do light
mapping for many objects. In fact only the school building uses light mapping. We used
several point lights and area lights to get a nice atmosphere.

Procedural textures
We used procedural textures for the ground plane. We used perlin noise n. from which we
took the quantity f = 1- n * n. This has nice ridge like features. Moreover to make the texture
fit to the visual style of the rest of the game, we then used a step function to get discrete
values for f. The so calculated f is then used to mix a foreground color corresponding to
grass and a background color representing the dirt. For the street, we just took 1-f and the
same colors. If the current fragment belongs to the street or to the world is sampled from a
black and white texture.

Cel Shading
In our current state the lightning comes from the sky which is directional lighting. We have
also one point light. The lightning calculations is done with cel shading. We implemented our
own cel shader. It calculates the dot product of the normal and light direction and then bins it
with the formula x -x%4 to get discrete shades.

Contours (edge detection)
Outlines of our objects are generated in two ways. Firstly a sobol filter finds discontinuities in
the depth buffer, secondly we use a LoG filter to find places where the surface normal
changes. If these values are above a certain threshold, we paint a black pixel there. This is
done as a postprocessing effect. This means that the the screen is first rendered to a
texture, where the color, the normals and the depth value are rendered into different
textures. These information is then used to calculate the outlines, as described above.

Controls
The main controls are for moving the camera. With W, A, S and D you are able to move
camera to the right, left, front and backwards. By pressing R or F the camera can be moved
up and down. With Esc the game can be quit and with Enter the wave can be started. With R
the building indicator can be hidden and with E the building is rotated. With the mouse you
can move the view from the current position. With left click buildings can be placed. A
transparent rectangle indicates the size and position of the building that will be placed, with
the key Q you can hide this rectangle. Also walls can be placed at the street. With the
number keys 1 and 2 you are able to switch between the buildings and the wall.

Other interesting controls:
F1 - Help
F2 - Frame Time on/off
F3 - Wire Frame on/off
F4 - Shadows on/off
F8 - View-frustum Culling on/off

Basic Gameplay
The goal is to survive a wave of enemies. First you are able to place buildings all around the
street. There is no need of placing all buildings before starting. After placing min. one
building you are able to start the game by pressing enter. During the wave you are still able
to place buildings and every 10 enemies you get to place one additional building. If you have
placed enough buildings, you will survive the wave. You win the game, if you survive all
waves. If an enemy reaches the end of the street, the player loses 5 to 10 hp of the initial
100. You lose if you life turns zero.
To help and make the game more interesting one can also place walls on the street.

Features

Collision checks
When placing buildings we check if at the current position is the street or if it is colliding with
another building.

Fighting system
Each building has 5 barrels, which are the weapons of the buildings. The barrels roll out one
after another and implodes after the range of the building is reached. We detect collisions
between the barrels and the enemies and once they hit a enemy, they implode. The enemies
get hitten and destroy once their life is to low.

Libraries
FreeType for the text on the screen. https://www.freetype.org/
FreeImage to import images. ​http://freeimage.sourceforge.net/
Assimp to import models. http://www.assimp.org/
Physx for physics calculations. https://developer.nvidia.com/gameworks-physx-overview

http://freeimage.sourceforge.net/

