

Lukas Fischer, 1527007
Christian Clemenz, 1226279

Gameplay
In our game you have to overcome obstacles to reach the end
of the level and defeat the evil Dr. Acomalith. The gameplay
consists of two main mechanics. The first one is a platform that
can be generated under the player’s feet if in midair. The
second feature is a ball you can throw. Pressing the left mouse
button after you threw the ball will teleport you to its current
location. The teleportation is used to overcome challenges that
can’t be solved by jumping. At the end of every level you have
to throw the ball at the evil Dr. Acomalith to finish and advance
to the next level. If you fall into the lava or hit the spikes you will
have to start over.

Levels
When the game first starts, the first level is loaded. The player
has to reach the end of the course and hit Acomalith with the
ball to advance to the next level. Alternatively levels can be
switched with the buttons 1-4. If you want to start from a certain point of the level you can fly
there with the free fly cam.

1. The first level is a tutorial level. Signs explain the basic mechanics of the game.
2. In this level the player has to use the platform the the teleport sphere to scale a tower

and avoid spikes and lava.
3. Here you must avoid obstacles and use the teleport sphere and and platform in

different ways.
4. The purpose of this level is to show the requirements for this course and to take a

closer look at the effects.

Controls
W,A,S,D Move forward, backward, left, right

Right mouse Pick up teleport ball

Left mouse Throw ball if currently held, teleport to the sphere it if
thrown

Space bar Jump if in first person, generate platform if in midair

Move mouse in any direction Change viewing direction

R Reset position of the player

M Mute music and sounds

Escape Exit the game

1-4 Change level

F1 Open help

F2 Enable/disable debug output on console

F3 Enable/disable wireframe

F4 Switch Texture-Sampling-Quality: Nearest
Neighbor/Bilinear

F5 Switch Mip Mapping-Quality: Off/Nearest
Neighbor/Linear

F6 Enable/disable normal mapping

F7 Switch between SSAO modes (on, off, ssao only)

F8 Disable/enable view frustum culling

F9 Enable/disable blending (platform)

F10 Switch camera between first person cam and free fly
cam (used for debugging)

Q, E Move up or down (only in free fly mode)

Shift Fly faster (only in free fly mode)

F11 Enable bullet debug drawing

Requirements

Freely movable camera
When you start the game, you can move around from a first-person perspective. You can
move, jump and use the teleport sphere. Pressing F10 changes to a free fly cam, we
primarily use for debugging. This way you can take a better look at the lighting.

Moving objects
There are already multiple moving objects in the game. The player, the objects that are
manipulated by bullet (e.g. teleport sphere, …) and some lights that move around a loaded
model.

Texture Mapping
We load the textures with SOIL and the models with Assimp and the necessary info for
rendering are given to the according mesh object. We also use a shader for debugging that
isn’t affected by the lighting.

Simple lighting and materials
We have implemented simple point lights with Lambert-Phong illumination. We don’t use
specular highlights for our game because we want to keep our art style simple. Depending
on the level there are some static point lights (mostly where torches are on the wall) and
exactly one light, that is casting the shadows.
The first level has shadows right at the beginning when you start. In the second level the
shadow caster is rotating light halfway to the top of the tower. In the third the shadow caster
is located near the end of the level.

Complex objects
Most objects are simple in terms of geometry, but we implemented our game so that it also
works with more complex objects. In the fourth level you can take a look at a testobject with
many vertices that shows lighting and shadows. With the free fly cam you can also take a
closer look at the normal maps.

Animated objects
To show the combination of model matrices, we rotate multiple little spheres around the
teleport sphere.

View frustum culling
For the view frustum culling we calculate a bounding sphere for each object and during
runtime each object (only those which aren’t moving) gets checked if it is inside the view
frustum of the player. You can see the number of tris drawn in the debug output of the
console.

Experimenting with OpenGL
Mip Mapping and Texture-Sampling-Quality settings can be switched with the F4 and F5
buttons. Blending can be enabled with with F9 and can be seen on the plane that is
generated with space bar.

Effects
Normal mapping
We use normal mapping on almost all objects. For that we calculate the object’s tangents
when loading the model and use the Tangent Bitangent Normal Matrix to get the normal
vector from a texture (normal map).
References:

● https://learnopengl.com/#!Advanced-Lighting/Shadows/Shadow-Mapping
● OpenGL Programming Guide Ninth Edition (Big red book)

Shadows
For shadows we use Shadow Mapping. Since we only have point lights we need
omnidirectional shadow mapping. The scene gets rendered once through special shaders to
write the depth of each vertex into a texture contained in a cube map. The cubemap is then
used for the shadow caster to calculate if a fragment is light by it or not. To smooth the
achieved shadows we use PCF by sampling through the neighbor texels in the cubemap and
averaging them. To save some performance
References:

● https://learnopengl.com/#!Advanced-Lighting/Shadows/Point-Shadows
● http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/

Both of these techniques were combined in one shader (both in normalMap and
lambertPhong)

Screen space ambient occlusion
First the image gets rendered into a framebuffer with calculated light intensities and
shadows. Then the content of the framebuffer is rendered into another framebuffer as a
screen space plane with SSAO values calculated. Finally the two framebuffers are combined
in a shader (ssao gets blurred) and the result is presented as another screen space plane.
Number of samples, radius and bias can be configured via the config file.
References:

● https://learnopengl.com/#!Advanced-Lighting/SSAO
● https://mtnphil.wordpress.com/2013/06/26/know-your-ssao-artifacts/

https://learnopengl.com/#!Advanced-Lighting/Shadows/Point-Shadows
https://mtnphil.wordpress.com/2013/06/26/know-your-ssao-artifacts/
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/
https://learnopengl.com/#!Advanced-Lighting/SSAO
https://learnopengl.com/#!Advanced-Lighting/Shadows/Shadow-Mapping

Configuration
In the configuration file config.ini you can adjust some parameters:

● screen_width, screen_height
With these you can change the resolution.

● fullscreen
You can make the game full screen if it is set to true.

● mouse_sensitivity
This changes the speed at which the camera rotates when looking around.

● refresh_rate
This changes the refresh rate of the frames.

● printFPS_in_console, printFPS_every_x_frames
These enable/disable the debug output (fps, frame time and tris drawn) and how
frequent it gets printed.

● ssao_samples, ssao_radius, ssao_bias
With these you can change how the ssao effect looks.

● ambient
This parameter changes the overall brightness of the game.

Libraries
● Bullet physics

http://bulletphysics.org/wordpress/
● Assimp for loading the models

http://assimp.sourceforge.net/
● SOIL for loading images

http://www.lonesock.net/soil.html
● OpenGL, GLFW, GLEW, GLM
● Spdlog a c++ logging library

https://github.com/gabime/spdlog
● RapidXml - C++ xml parser

http://rapidxml.sourceforge.net/

All our models were built in blender and exported to obj files. Normal textures were created
with Crazybump ​http://www.crazybump.com/​.

Our levels are loaded from xml files. The model were assembled to levels in unity, for which
we wrote an extension to export the properties of the models (position, rotation, scale,
properties, …) as an xml file.

http://www.lonesock.net/soil.html
http://assimp.sourceforge.net/
http://www.crazybump.com/
http://rapidxml.sourceforge.net/
http://bulletphysics.org/wordpress/
https://github.com/gabime/spdlog

