
Features 

Freely movable camera 

The camera is implemented via the scene graph: A „Transformation“ node is attached to the scene‘s 

root, to which the camera is attached in turn. By setting the transformation-node‘s matrices the 

camera can be moved around. 

The exact transformation is determined by a character controller, which handles physics interactions, 

translation and rotation and implements a simple closed-loop control to ensure movement works as 

expected. 

Moving objects 

Moving objects are implemented in a very similar fashion to the camera: To move an object it is 

simply stuffed into a transformation node, whose transform is then altered. 

Another way to move objects is to apply physics to them. In this case the model is set as child of a 

physics node, thus applying all transformations of that node to the child as well. 

Hierarchical animation is implemented in puppets that walk the corridors: Their head is parented to 

the body, thus making them move in union. 

Texture Mapping 

Texture mapping is implemented in the usual fashion: All meshes have UV coordinates stored per 

vertex, which are then interpolated per fragment and used to sample the material’s textures. 

Simple lighting and materials 

Our lighting was rewritten from scratch to support dynamic, programmable lights. As we use a 

deferred renderer all light sources simply draw a quad over the screen and then apply their lighting 

calculations. While our materials are still capable of using Unreal Engine’s physically based shading 

model the lights currently don’t, effectively rendering PBR disabled for the moment. 

Controls 

The player can move with E (Forward), S (Left), D (Backward) and F (Right). The player can jump by 

pressing Space The camera view direction can be controlled by moving the mouse. The A Key turns 

on the flashlight, assuming it has charge left. 

Basic Gameplay 

The goal is to navigate a randomly generated dungeon before the time expires. The end is marked 

with a red light. 

To implement the required 3D component our dungeon is made up of multiple stories connected by 

simple elevators. 

Frustum Culling 

Frustum culling is implemented by first calculating the camera’s orientation in world space. This is 

done by simply applying its transformation matrix to a vector (0, 0, 1) and subtracting the camera’s 

position from the result. This orientation vector is then used to detect objects which are outside of 

the viewing area and thus culled. 



Additional Features 

 physically based Character movement (the character is part of the physics simulation) 

 resource loading framework for easy loading of assets and automatic memory management 

 deferred rendering 

 full scene graph 

Additional Libraries and Tools 

We are currently making use of these external libraries: 

 bullet physics - http://bulletphysics.org/ 

 SDL - https://libsdl.org/ 

 GLEW - http://glew.sourceforge.net/ 

 Substance Designer - https://www.allegorithmic.com/products/substance-designer 

 

In addtition to the game itself we also make use of the following libraries and tools, which were also 

written by us: 

 pyrformat, for resource loading 

 RUtil, generic utility functions 

 RLib, for abstracting away low level actions, including OpenGL and I/O 

 RGui, for UI drawing and I/O 

 REng, the actual game engine 

 assetmake, for automatically converting game assets into resources, as understood by the 

engine 

 fontconv, for converting fonts to distance fields 

 FrostScript, as shading language (used by some, but not all shaders) 

http://bulletphysics.org/
https://libsdl.org/
http://glew.sourceforge.net/
https://www.allegorithmic.com/products/substance-designer

