
Escape the Island
Computergraphik, 186.831, UE, 2017S

Maria Schimkowitsch (0525297)
Benedikt Tomaselli (0926048)

Controls

WASD Moving around

Space Jumping

Mouse Look around

E or Left Mouse Click Use / Interaction

R Toggle: Torch on/off

G Toggle: Render AABBs as wireframe

F2 Frame Time on/off

F3 Wire Frame on/off

F4 Texture-Sampling-Quality: Nearest Neighbor/Bilinear

F5 Mip Mapping-Quality: Off/Nearest Neighbor/Linear

F6 Normal Mapping on/off

F7 Virtual Displacement Mapping on/off

F8 Viewfrustum-Culling on/off

F9 Blending on/off

Implementation
Goal of the game is for the player to restore power and use a radio to escape the island,
before a mysterious monster catches up. To restore the power, the user will have to switch
on power stations scattered on the island. After all power stations are up and running, the
player needs to find the radio to call for help. The player has 5 Minutes to accomplish this
goal.

The game consists of a ​terrain​, that is generated from a Terrain-map and Height-map,
including rocks, grassland, beach and sea. During loading, the required vertices are
generated, as well as the UVs for the individual terrain parts, and the Normals, which are
first calculated per triangle-face and then averaged per vertex. The required Tangents and
Bitangents are then calculated after the normals were averaged, using the Gram-Schmidt

orthogonalization. The terrain is then added to the bullet-physics world, hence functions as a
base plane for the player to walk around.

The Terrain is populated with two types of ​trees​: pines and leaf trees, as well as bushes.
The positions are contained in the terrain-map. For rendering instancing is used, which
means that each tree is loaded only once from the .obj file and rendered up to 100 times with
different translations. The trees are represented by simplified boxes for the physics
simulation.

Additional structure’s positions, like the fence, walls, and the power stations are as well
provided in the terrain map.

There is also a small ruin, showing the effect of virtual displacement mapping (Parallax
Mapping) on it’s walls. (can be turned on/off with F7)

The radio, which needs to be found and used to win the game, has different positions on the
map, chosen randomly on each start.

The terrain also includes a ​sea ​piece. The water is represented by a plane, which is
distorted using two perpendicular sine-waves on the gpu. The terrain is physically separated
from the rest by an additional, invisible box.

Free-moving camera
The player is represented by a capsule and a camera. The capsule is required for the
physics simulation, and hence is responsible for the final positioning of the camera. To move
the camera, the user first moves the capsule in the desired direction, and the actual position
is then calculated by the physics simulation, taking all potential obstacles into account. The
action “Jumping” applies a short-timed force, directing up, onto the capsule.

The player can also sprint for a short time, using the SHIFT key. After the sprint, the player
needs to recover before sprinting again. The ability to sprint comes in handy, as the monster
becomes faster than the player at a certain point.

Moving objects
There is a mysterious creature peacefully wandering the woods, but as soon as the player
toggles the first power station, the monster gets angry and starts hunting the player down.
This can easily be observed by the monsters eyes, which turn red when it gets angry and
also by the fact that it’s moving in the player’s direction quickly.

The hierarchical aspect of moving objects is the head of the monster. It can rotate on the
monster’s body independently of the bodies moving direction. This can be observed when
the player gets into a certain range.

There are also two testing balls jumping around in the world, which were included as testing
objects for the bullet-physics world.

The monster will be moved around by a simple AI, i.e. state machine. States are:

● Idle state: move to predefined positions in the world
● Active state: Hunt player, activated when player toggles first power station

Textures
Most Models were generated with Blender and Maya. Each model also provides UV
coordinates which are used for applying textures. Each model has

● Diffuse ​textures for the base colouring
● Normal ​textures for Normal mapping
● Specular ​texture for specular highlighting

Light Sources
● Directional Light​ - Moon light, static and basic light source
● Point Light​ - a small floating sphere, that also shows fire particles, which can be

switched on and off

Viewfrustum-Culling
Can be switched on/off with F8-Key. The amount of triangles rendered is displayed by
billboards showing a 2D-Text (in green).
To determine which objects have to be rendered and which not, the Bounding boxes of the
individual objects are either tested once (when the object is rendered only once) or several
times at different positions (when the object is rendered several times via instancing) against
the view frustum of the camera. For that, the bounding box’s coordinates are transformed
into Projection space, and then checked against the planes of the frustum. If all coordinates
are outside relatively to only one plane, the whole object has to be outside, and hence is not
rendered this frame.

Basic Gameplay
The player has to switch on three power stations and find the radio before the time is up
(indicated by a count-down in the upper right corner). The ​Count-down​ is shown by
billboards, with vertices calculated directly in screen space coordinates, and uvs which are
generated per frame, depending on the to be depicted characters (each letter corresponds to
a certain position in the provided font bitmap).
After switching on the first power station, the monster starts hunting the player down. With
each toggled switch, the monster gets faster than before and eventually faster than the
player. The buttons can not be turned off again.
After the last switch, the power is restored and the radio can be used.

Interaction with Environment
For collision detection is the bullet library used, for instance when the player and the enemy
collide which determines the end of the game.
Interacting with the buttons was separately implemented. For a successful hit detection, i.e.
the player activates a button, three checks have to be fulfilled. The first check verifies that

the player is within a certain distance to the button. The second check verifies that the angle
between the camera’s, i.e. player’s, looking-direction-ray and the ray between the camera’s
and the button’s centre, is not too big. The third and final check performs Ray-Triangle
intersection tests, between the button’s triangles and the camera’s looking-direction-ray.

Remarks

It is possible that the enemy can get stuck in a wall. This is a known bug and related to our
implementation of the collision detection with the bullet engine.

Neat Extensions

If we would keep developing this game, we would also randomise the power stations
positions. Additionally we would adapt the countdown-time, the amount of power stations
and the speed of the enemy to different levels of difficulty, which could be chosen by the
player himself. There would also be more than one terrain map to choose from.

Effects
Visual Effects

● Shadow mapping​ - includes Terrain, Trees, Bushes, Walls, Roof, Ruin and the
enemy, and is visible on them

● Normal mapping ​- visible on Terrain and Trees
● Plane animation​ ​via​ ​Geometry shader​ - visible on the water surface (waves)
● CPU particles​ - simulating fire, moves with the floating sphere
● Light Mapping ​- visible on the wall object near the beach
● Omni-directional shadow mapping ​- visible on terrain that some objects (roof,

walls) cast shadows
● Virtual Displacement mapping (Parallex Mapping) ​- visible on the ruin. Original

model is flat. Virtual displacement is done in the Fragment shader and results from
transforming a ray (from the camera to the individual vertex) into Texture space, and
then sampling that ray against a height texture. The values returned from the
sampling are used to distort the UV coordinates, with which the final texture is
sampled.

● Displacement mapping ​- visible on the monster's body, which originally is a simple
sphere. The spikes result from displacing the vertices in the Tessellation Evaluation
shader.

● Spot light​ - visible on the three power stations (red light cone). Turns green when
power switch is toggled.

Sound Effects

● Ambient soundtrack: background music
● Action: jumping, toggle power stations
● Events: monster gets angry, monster gets faster, power restored, losing, winning

Used Libraries
● glew ​… OpenGL extension wrangler library
● glfw ​… OpenGL Framework library
● glm ​… OpenGL mathematics library
● assimp ​… as modelloader, currently: only triangulated models in .obj files possible
● SOIL ​… image loader library, used as aid for texture generation
● SFML ​… simple image loading library, used for sampling the terrain-map and

height-map for the Terrain generation, and structure positioning
● irrklang ​… sound library
● bullet ​… physics library

