
ALBA
Documentation

Maximilian Deutsch 1327587

June 22, 2016

1 Gameplay

For every restart, the player is spawned at the beginning of the first level. All levels are
generated dynamically with some random parameters. The difficulty increases with each
level. Difficulty is defined by the number of platforms, their shape and their behaviour.
The first levels have slower and bigger platforms, whereas later levels have faster and
smaller ones. The player can move from platform to platform by jumping and moving
in a rotating way with the tube’s center as the angle point. The player must not touch
the surrounding tube, or the game is over, presenting the score of the run. The score
is the distance the player reached. A moving shadow is constantly approaching from
behind, wrapping everything that it passes with darkness. This forces the player to
move quickly.

2 Effects

2.1 Shadow Maps (with PCF) (1.5) + Omni-Directional (0.5)

Several point light sources are spawned across the levels, with the closest one to the
camera casting the shadows. The implementation is based on the Learn OpenGL Tutorial
[2]. From the light’s point of view the scene is rendered into a depth cube map in one
render pass. The geometry shader projects each triangle in the 6 different directions
for each side of the cube, storing the depth linearly. Afterwards the scene is rendered
normally from the camera’s point of view, passing the depth cube map to the shader.
For each fragment the distance to the light is compared to the distance stored in the
depth map in the same direction. If the stored depth is smaller than the fragments
depth a shadowfactor is calculated which weakens the light’s influence. To smoothen
the shadow’s edges the shadow values are sampled from the surrounding fragments and
a bias for the depth comparison is considered to eliminate some artifacts generated from
skewed light directions.

1



2.2 Something similiar to Lens Flare (0.5)

The implemented algorithm for the ”lens flare” effect is roughly based on the steps
explained in the Article Lens Flares Effect in Java[1]. The light causing the ”lens
flares” is positioned at the far plane from the camera in the direction to the end of the
tube. This position is transformed into window space to check if the light is within the
camera’s view. If the corresponding depth value matches with the depth value from the
light (1.0, as it is always on the farplane), it is not covert by anything. This comparison
is done with a 3x3 block, where if one pixel passes, the light is visible. The ”lens flare”
effect itself is a partly transparent texture that is rendered on a quad with its center
placed around the lights position.

2.3 Depth of Field (1.5)

The algorithm is based on the blog post Depth of field reloaded [4], with partly different
implementation approaches. Blurring is done on a downsampled texture because of
performance reasons. The blurring itself is done using a gaussian filter, implemented in
a way described by the article Efficient Gaussian blur with linear sampling [3]. A fewer
texel fetches are achieved by exploiting interpolated fetches with proper weight factors.
The algorithm is done in 5 steps:

1. While rendering the scenen, a blur factor per vertex is calculated from the position,
focal distance and focal range, interpolated per fragment and stored in a seperate
texture.

2. The color texture of the scene rendering is downsampled to a texture quarter
the size, by copying it into a seperate framebuffer with proper size and texture
attached.

3. A gaussian filter is applied along the X-Axis of the downsampled texture.

4. A gaussian filter is applied along the Y-Axis of the X blurred texture.

5. The final fragment colors are interpolated between the full resolution texture and
the blurred texture based on the blur factor calculated in the first step.

3 Objects

Using the Assimp library several meshes that have been created with 3dsMax are loaded
at the start of the game. These meshes are the tube and pipe segment, four types
of platforms and the rotor. The meshes are shared between multiple instances. All
meshes are textured except the rotor, which has a plane white material. The fourth
type of the platforms consists of two meshes with one being the child of the other. Both
parts have different moving behaviour with the parent passing its transformation to its
child representing the ability for hirarchical animation. In fact the transformation of

2



the whole world (rotation) is passed to all models, making it a hirarchical animation
too. The collision objects for bullet are created from low-poly models with Blender and
exported as .bullet-files.

4 View-Frustum-Cullling

For each Mesh a bounding box is calculated from its minima and maxima vertices.
When enabled this bounding box is used for view-frustum-culling by transforming them
in clipspace and comparing the respective components. A Vertex Count can be displayed
to see culling affecting the number of meshes rendered.

5 Transparency

The pipe in the middle of the tube has an translucent material. The pipes are rendered
after all other opaque models have been drawn for the correct translucency. Also the
pipes are not rendered for the shadow mapping from the light’s point of view, disabling
shadows casted from them.
Additionally partly transparent textures are used for the Text and the Lens Flare.

6 OpenGL functionality

• Apart from VAO and VBO, Uniform Buffer Objects (UBO) are used to store data
for the the shaders. Multiple ligths are passed to the shader via an array of structs
stored in an UBO. The array lenght is fixed and the number of lights is passed as a
seperate uniform. For the different effects multiple Framebuffer objects are used.

• the texture quality can be regulated by mip mapping and sampling quality.

• The wire frame mode reveals the objects complexity

7 Additional Features

• To visualize the collision shapes from the Bullet library, its Debug Draw is imple-
mented and enabled with F6. The implementation is not optimized and very slow,
dropping the framerate enourmously. The shapes are only visible with DoF and
Lens Flare disabled.

• With F7 the Coordinate Axes are drawn in front of the camera, with Red X, Green
Y, and Blue Z Axis.

• Vertex Normals can be visualized by pressing F10. This is achieved by rendering
the scene with a Geometry Shader that draws a line per Vertex in the direction of
the Normal.

3



• To visualize the Bounding boxes used for the viewfrustum culling, press F11.

8 assignment of keys

ESC Quit
F1 Vertex Count
F2 Frame Time on/off
F3 Wire Frame on/off
F4 Textur-Sampling-Quality: Nearest Neighbor/Bilinear
F5 Mip Mapping-Quality: Off/Nearest Neighbor/Linear
F6 Collision Shape drawing: on/off
F7 Coordinate Axes Drawing: on/off
F8 Viewfrustum-Culling on/off
F9 Transparency: on/off
F10 Vertex normal Visualization: on/off
F11 Bounding Box drawing: on/off
1 Shadows: on/off
2 Lens Flare: on/off
3 Depth of Field: on/off

Y-Button R Restart
B-Button P Pause/Resume
X-Button G Godmode (no gameover)
left stick W/A/S/D Movement
right stick Mouse Look around
right trigger space jumping

In the pause mode the left and right triggers are used to move forward and backwards.
With Godmode enabled contact with the tube is allowed and the moving shadow is
disabled, allowing to freely explore the levels .

9 known issues and bugs

• Shadows are not drawn at a certain camera position and viewing direction (facing
away from the light source).

• Translsucent objects with DoF enabled are drawn wrongly at some camera posi-
tions.

• When the frame rate drops below 30fps, the applied forces for jumping are too
high, causing unnormal movement.

• At high velocities, it is possible to get through collision objects.

4



References

[1] Luis Cruz. Lens flares effect in java. http://www.emagix.net/academic/item/lens-flares.
Accessed: 2016-06-20.

[2] Joey de Vries. Point shadows. http://learnopengl.com/#!Advanced-Lighting/Shadows/

Point-Shadows. Accessed: 2016-06-20.

[3] Daniel Rkos. Efficient gaussian blur with linear sampling. http://rastergrid.com/blog/

2010/09/efficient-gaussian-blur-with-linear-sampling/. Accessed: 2016-06-20.

[4] Angelo Theodorou. Depth of field reloaded. http://encelo.netsons.org/2008/04/15/

depth-of-field-reloaded/. Accessed: 2016-06-20.

5

http://www.emagix.net/academic/item/lens-flares
http://learnopengl.com/#!Advanced-Lighting/Shadows/Point-Shadows
http://learnopengl.com/#!Advanced-Lighting/Shadows/Point-Shadows
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
http://rastergrid.com/blog/2010/09/efficient-gaussian-blur-with-linear-sampling/
http://encelo.netsons.org/2008/04/15/depth-of-field-reloaded/
http://encelo.netsons.org/2008/04/15/depth-of-field-reloaded/

	Gameplay
	Effects
	Shadow Maps (with PCF) (1.5) + Omni-Directional (0.5)
	Something similiar to Lens Flare (0.5)
	Depth of Field (1.5)

	Objects
	View-Frustum-Cullling
	Transparency
	OpenGL functionality
	Additional Features
	assignment of keys
	known issues and bugs

