Project N.A.R.W.H.A.L.

1.
1.1.

1.2.

2.
2.1,

2.2.

Gameplay
Goal

The goal is to eat all the nuclear waste before the timer runs out. The player also needs
to make sure, not to touch any of the fishing hooks. Points can be earned for eating
waste and are lost for touching a hook. The objects are spawned randomly when the

game starts.

Controls
W move forward
S move back
A move left
D move right
X move down
SPACE move up
Mouse rotate whale
M mute sound
P start particle effect (demo)
F1 display help

All function keys are bound as the requirements suggest.

Features

Animated Objects

The fin and the whale itself are two different objects. When the whale moves, the fin
moves and rotates up and down. Its position changes relative to the position of the body

of the whale.

View Frustum Culling

In every loop pass, the position of the view frustum is calculated to match the newly
calculated camera. The position is then used to calculate 6 panes. We use a spheric hit
box for each object so we have to find out if a sphere is outside or inside the hitbox (this
can easily be done by calculating the signed distance from a point to a pane (assume




the normals are pointed inwards). If the object is outside every pane of the hitbox, we
simply ignore it for the whole loop pass.

Reference:
http://cgvr.cs.uni-bremen.de/teaching/cg_literatur/lighthouse3d_view_frustum_culling/
(22.06.2015)

2.3. Transparency
The transparency of all objects can get turned on and off. For the png images of the

images the alpha channel gets used.
Transparency is also used to render text smoothing.

2.4, Experimenting with OpenGL
VBO, VAO, FBO are used in the project.
The required features can be turned on or off via following keyboard buttons:

F2 Frame Time on/off

F3 Wire Frame on/off

F4 Texture-Sampling-Quality: Nearest Neighbor/Bilinear
F5 Mip Mapping-Quality: Off/Nearest Neighbor/Linear
F8 View Frustum-Culling on/off

F9 Transparency on/off

2.5 Text Rendering
We use the FreeType library to render text onto the screen. Every glyph is extracted
from the open type font at the beginning. Currently, only one font size is natively used.
The different font sizes are only up scalings of the generated bitmaps.
Reference:
http://learnopengl.com/#!In-Practice/Text-Rendering (22.06.2015)

2.6 Random Object Spawning
When the game is started, a predefined number of good and bad objects are spawned
randomly throughout the map. The spawning area is defined between two bounds: An
outer bound where the hero can’t move (so the hero can’t move underneath the earth or
outside the map) and an inner bound (which is around the spawn point of the hero). This
way, every level has to be played a little different.

3. IHlumination and Textures

All Objects are illuminated by one light source. The light source is placed in the middle of the
field and its effect is visible on all objects. The illumination effect is implemented after the phong


http://cgvr.cs.uni-bremen.de/teaching/cg_literatur/lighthouse3d_view_frustum_culling/
http://learnopengl.com/#!In-Practice/Text-Rendering

lighting scheme. The lighting effect is visible on the narwhal and its fin. The position and
direction of this light source is also used for creating the shadow maps.
The narwhal, its fin, the floor, the nuclear waste and the particles use textures.

4.

41.

4.2.

4.3.

4.4.

Effects

Shadow Maps (with PCF) 1.5p Sebastian
The shadow maps use the same light source as is used for creating the lighting effect
for the objects. We used a directional shadow maps effect. We started to implement
omni directional light sources, but they did not make it in the final build.

Reference:
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping
(20.06.2015)
http://www.learnopengl.com/#!Advanced-Lighting/Shadows/Shadow-Mapping
(20.06.2015)

CPU particle effect 0.5p Sebastian
Many instances of a PNG image of a bubble with alpha channel get created. The size
and direction of the particles get modified. We chose not to change the color. The
particles are visible as bubbles on top of the hero whenever the whale feeds on nuclear
waste. We had to make sure, that the particles are the last objects to be drawn, or else
the transparency would not work correctly.

Reference:
http://www.opengl-tutorial.org/intermediate-tutorials/billboards-particles/particles-instanci
ng/ 20.06.2015

Glow 1 p Philipp
Objects can be marked as glowing. After the default object rendering pass, all objects
will be drawn to a frame object buffer again, this time, only objects that are marked as
glowing will be drawn and the other objects will just pass the depth information to the
frame buffer object. The resulting image only shows the glowing objects that are actually
visible by a camera. The resulting frame buffer is then rendered to both a horizontal and
then a vertical gaussian blur shader. The resulting, blurred, image is then added to the
default rendering image using g1BlendFunc (GL_ONE, GL_ ONE)

Reference:

http://http.developer.nvidia.com/GPUGems/gpugems_ch21.html (05.08.2007)
Environment Mapping 1 p Philipp

We use a sky map that is mapped onto a cube while drawing the skybox. This texture is
passed to the environmental mapping shader. The shader will calculate the reflection
based on the camera and the normal vector. The reflection vector is used to read the
corresponding texel in the cube map and thus displays the reflected skybox on its
surface.

The environmental mapping is used to get a chromatic look for the fishing hooks. There
is also a demo cube somewhere on the map (underneath the hero spawn) that
demonstrates the environmental mapping a bit better (the hooks are rather thin).
Reference:



http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping
http://www.learnopengl.com/#!Advanced-Lighting/Shadows/Shadow-Mapping
http://www.opengl-tutorial.org/intermediate-tutorials/billboards-particles/particles-instancing/
http://www.opengl-tutorial.org/intermediate-tutorials/billboards-particles/particles-instancing/
http://http.developer.nvidia.com/GPUGems/gpugems_ch21.html

http://www.learnopengl.com/#!Advanced-OpenGL/Cubemaps (21.06.2015)

5. Libraries

Model loading: assimp (http://assimp.sourceforge.net)
Texture loading: freelmage (http://freeimage.sourceforge.net)
Audio handling: irrKlang (http://www.ambiera.com/irrklang)
Font handling: freetype (http://www.freetype.org)

GLEW (http://glew.sourceforge.net)

GLFW (http://www.glfw.org)

6. Special Features
All models and sound effects (not the background music) were created by us. The fin of the
whale is animated. When the hero eats nuclear waste, bubbles burst from his back. Objects
spawn randomly every time you start the game.

7. Tools
The models for the narwhal and its fin, the floor, the nuclear waste and the fishing hook where
created with blender. After that they were exported as collada files, which are used by the
game.
The texture for the narwhal was edited with gimp.
The sound effects were edited with reaper.

8. Interaction
The game is pretty simple. Hit the green fuel rods and try not to hit the fishing hooks. Because
the level is different every time you start the game, there is no “guide” to win the game.


http://www.learnopengl.com/#!Advanced-OpenGL/Cubemaps
http://www.glfw.org/

