UE Computergrafik — 183.831

2. Submission

— Deserter —

Balint Istvan Kovacs 1227520, 033 532
Lilla Fésis 1226017, 033 532

SS 2015



Implementation

Gameplay

Deserter is a semi-rail shooter game with scripted camera movement, but with a free movable
first person view. The camera can be turned in an FPS mode and in a true rail shooter mode.
The difference is, that in the latter the aiming is based on the cursor’s location and the camera
can be turned with the WASD key combination.

5 FPS mode

6 rail shooter mode

The aim of the game is to shoot down a given number of enemies within the given time. On
each level the number of needed kills and the speed are higher, but the time is shorter. These
variables are displayed in the top left corner before a level starts. If the time is up, the player
loses.

Another feature is that the player can either be on an aircraft and shoot from the air or can drive
a tank a shoot from the ground. These two modes are called air mode and ground mode and
they can be set in the configuration.txt file. Please notice, that the air mode is only
available with random player path generation. This random challenge can also be set in the
configuration.txt file and in this case the predefined player path will be random
generated in the main. cpp, before the level starts. We manipulate the x and z coordinates and
the height is obtained from the ground with the help of a terrain collider

(mainTerrainCollider).

Fig.1.: Two gaming modes; in the air or on the ground

The terrain collider is mainly used for preventing to shoot through the sand. If the projectile
meets the ground a semi-transparent dust cloud is rendered to enhance its effect.



Effects
Shadow Mapping with PCF (1.5)

Shadow Mapping is implemented through a simple depth map rendered from the point of view
of the assigned light source. A separate frame buffer object is used to hold the depth texture,
which is then bound for reading at the default render stage. Both the shadow map as well as the
default render stages are provided information about the light position in order to calculate the
correct values. Percentage closer filtering is used to create softer shadow edges. The
implementation is based on OGLdev Modern OpenGL Tutorials Nr. 23, 24 and 42.

Since the huge size of the game world, shadows are not of uniformly good quality with a fixed
light. To avoid this we implemented a permanently moving spotlight, which moves with the
player and is by 20. 0f below the camera, so the shadows are not exactly behind the objects.

Fig.2.: Shadow mapping with PCF

Normal Mapping (1)

Normal mapping is implemented in world space based on the tutorial Gamasutra: Robert Basler
- Three Normal Mapping Techniques Explained For the Mathematically Uninclined. The
tangents and bitangents are post processed by the Assimp Loader Library and a TBN (tangent,
bitangent, normal) matrix, as well as the light directions, are calculated in the vertex shader. The
effect needs a normal map, for which the path is the second attribute of the method void

ModelLoader::load(std::string file, std::string normalMap,
std::string reflectionMap, Scene::Mesh &m). The shader does not take the


http://ogldev.atspace.co.uk/index.html
http://www.gamasutra.com/blogs/RobertBasler/20131122/205462/Three_Normal_Mapping_Techniques_Explained_For_the_Mathematically_Uninclined.php?print=1
http://www.gamasutra.com/blogs/RobertBasler/20131122/205462/Three_Normal_Mapping_Techniques_Explained_For_the_Mathematically_Uninclined.php?print=1

specular attribute into account and the output color is based only on the ambient and diffuse
lights.

Normal mapping is used to render the rocks and the drones above the enemies. To exaggerate
the effect we placed a huge rock in one of the corners of the gamefield, around what a drone
and a blue light source circles.

Fig.3.: Visualizing normal mapping

Environment Mapping (1)

Environment mapping is implemented with a reflection map, which is the third attribute of the
method void ModelLoader::load(std::string file, std::string normalMap,
std::string reflectionMap, Scene::Mesh &m), however the default is with a fix
reflexion coefficient. To enable the reflection map code must be uncommented in the
environment. frag fragment shader.

Fig.4.: Environment mapping with a fix reflection coefficient (leff) and with a reflection map
(right)

4



The sky box is a separate class with its own texture loading, since we need to generate cube
maps instead of 2D textures. The vertices of the skybox are hard coded in the class
SkyBox.cpp and the depth test is disabled before its rendering. For the implementation of the
sky box, as well as for the effect, following two tutorials were used: Learn OpenGL - Cubemaps,
Anton Gerdelan - Cube Maps: Sky Boxes and Environment Mapping

Motion Blur (1.5)

The effect is a per object motion blur. At each render loop, a velocity texture is rendered in a
separate step, containing the motion vectors of the rendered objects. These calculated from the
current and the previous MVP matrices, which the camera and the model objects have to keep
track of and provide in a correct manner. From the velocity texture, the speed and direction of
moving fragments is calculated in screen space. This information is used to sample and blur the
content of the default render stage (stored in a separate texture). Finally the results are
rendered onto a fullscreen quad. This approach is outlined here: john-chapman-graphics -
Per-Object Motion Blur.

The effect's strength can be adjusted in the configuration.txt file by setting the
fMotionblurFactor to another float.

Fig.5.: Motion blur at the explosion of the enemy

Complex objects

For the import of complex objects we use the Assimp Loader Library and the Freelmage Library
for their textures. The models were created by Balint Istvan Kovacs with 3D Studio Max and
each of them has texture and material, too.


http://learnopengl.com/#!Advanced-OpenGL/Cubemaps
http://antongerdelan.net/opengl/cubemaps.html
http://john-chapman-graphics.blogspot.co.uk/2013/01/per-object-motion-blur.html
http://john-chapman-graphics.blogspot.co.uk/2013/01/per-object-motion-blur.html

To see the complexity of the object we provide a wireframe render mode. For turning it on/off
press F3.

Fig.6.: Enemies and rocks in wireframe mode

Animated objects

Our animated objects are the enemies, which are composed of independent parts. (Currently:
body, base and drone.) Every enemy has a battle drone attached, which rotates around the
y-axis and is dependent from the crawler’s position. The base of the crawler has three animation
frames, which are loop around based on the current time.

View frustum culling

To check whether an object is within the view frustum of a camera the methods bool
Scene::Camera::isInViewFrustum(glm: :vec3 point) and bool
Scene::Camera::isInViewFrustum(glm: :vec3 point, float radiusLength)
are used. The former tests a point and the latter tests a sphere. To test a cube we use the
second method and generate a sphere with the middle and maximal point of its bounding box.
The frustum planes are extracted from the view-projection matrix of the camera based on the
tutorial Adventures in Game Development World - View Frustum. The distance between the
planes and the sphere is the signed distance and it is out of the frustum if its center is on the
wrong side of at least one plane and the distance to the plane is greater than its radius. To
understand view frustum culling the tutorial Lighthouse3d.com - View Frustum Culling was very
useful.



http://ruh.li/CameraViewFrustum.html
http://www.lighthouse3d.com/tutorials/view-frustum-culling/

To see the effect of frustum culling press F2 to see the performance and press F8 to turn the
culling off/on. When frustum culling is on less objects are rendered. Please notice, that the
ground is not added to the number of rendered objects.

Fig.7.: View frustum culling on (top) and off (bottom)

Transparency

Transparency is applied on the sand dust, when the player shoots into the ground. The dust
consists of several objects, that have different alpha values. Transparent object have a
dedicated shader with fixed opacity values. To turn transparency on/off press F9.

Fig.8.: Transparency on (left) and off (right)



Controls

WASD (rail shooter mode) turn turret
WASD (debug mode) move camera on horizontal axes
XY (debug mode) move camera on vertical axis

MOUSE (rail shooter mode) move crosshair
MOUSE (FPS and debug mode) turn camera

LEFT MOUSE BUTTON shoot

LEFT MOUSE BUTTON HOLD
RIGHT MOUSE BUTTON HOLD

MOUSEWHEEL (debug mode)

continuous shooting
zoom + bullet time

zoom in/out

P pause

1 setup spotlight

2 setup directional light

3 —

4 =

5 FPS mode

6 rail shooter mode

7 debug mode

8 game mode

F1l =

F2 performance on/off

F3 wireframe mode on/off

Fa texture sampling quality nearest
neighbour/bilinear

F5 mip mapping quality off/nearest
neighbour/linear

F6 =

F7 =

F8 view frustum culling on/off

F9 transparency on/off

Tab.1.: Controls
Experimenting with OpenGL

In our implementation, different render targets are set by creating different types of framebuffer
object to hold the configuration details (required texture objects and their settings, etc.) for the



task at hand. These classes supply the functionality for binding the right textures for
reading/writing at the specialized render passes.

OpenGL Textures can be interpolated in two ways: scaling the image down with the keyword
GL TEXTURE MIN FILTER and scaling the picture wup with the keyword
GL TEXTURE MAG FILTER. The former can have six parameters, namely GL NEAREST,
GL LINEAR, GL NEAREST MIPMAP NEAREST, GL LINEAR MIPMAP NEAREST,
GL NEAREST MIPMAP LINEAR, GL LINEAR MIPMAP LINEAR, but the latter can have only
the first two. The table below visualises how the different filterings are implemented in our
game. In order to change the settings press F4 for texture quality and F5 for mip mapping
quality.

Texture sampling

quality nearest neighbour bilinear
glTexParameteri (GL TEXTURE 2D glTexParameteri (GL TEXTURE 2D
. . , GL TEXTURE MAG FILTER, ; GL TEXTURE MAG FILTER,
Mlp rnapplng GL_NEAREST) GL LINEAR)
quality

Off --
o --

default

Tab.2.: Filter qualities at different settings

linear




Lightning, textures and materials

Light.h represents our lightning object. We provide implementation for spotlight, point light
and directional light and we do have both in our initial game. An array in the main . cpp contains
the loaded light sources, where gL.ights[0] is a spotlight, gL.ights[1] is a directional one
and gLights [2] is the directional muzzle flash. We differentiate directional light by setting the
w coordinate of the position 0.0f. The initialization happens also in the main.cpp in the
SetupLights () method. A spotlight moves with the player permanently and provides the
moving light source for normal and shadow mapping.

A light source has several attributes (with their default values):

position (0.0f, 0.0f, 0.0f, 1.0f)
color (1.0f, 1.0f, 1.0f)
attenuation (0.11)

ambient coefficient (0.1f)

spotlight angle (180.0f)

spotlight direction (0.0f, 0.0f, 0.0f)

Interesting feature is our muzzle flash light, that occurs at firing and illuminates the environment.

Fig.9.: The yellowish light is the muzzle flash

Every object in the game is textured. The color map is loaded automatically in the
ModelLoader class and the file’s location is encoded in the material (.mt 1) file of the object.

10



The actual texture loading happens with the Freelmage library also in the ModelLoader class,
but for example the skybox has it own texture loading and binding function.

Since only one texture can be saved in the material file, additional textures, for example the
normal map’s and reflection map’s path, must be provided explicit. If the model does not have
one, an empty string will be passed and the loading of these maps are skipped.

The texture binding is performed in the ModelAsset class. The mesh has two booleans,
called hasNormalMap and hasReflectionMap, which indicates, whether a normal or
reflection map was loaded. If first is the case, than the normal or reflection map will be bound
as well and assigned to the shader.

The material is a struct in the Mesh class. The attributes are loaded in the ModelLoader
class from the material file with the help of the Assimp library functions. A material has following
properties:

diffuse
ambient
specular
emissive
shininess

Not all of these properties are considered in every shader, for example the normal mapping
shader does not use the attributes specular, emissive and shininess.

Features

We tried to implement realistic features, that imitate real physical occlusions. These are for
example the dust cloud, if the player hits the sand, the muzzle flash at every shot and the
shaking at the explosion of an enemy.

Another remarkable feature is the random and automatic path generation. We do not need to
predefine every level, but they are still different. In this way unlimited levels are possible and we
spare space, since we do not need to store the path in an . ob7 file.

At the beginning of the game the player must travel through a wormhole, which is an unattended
feature of our motion blur initialization.

Additional libraries

The following libraries were used for development:

o GLFW http://www.glfw.org/

e GLEW http://glew.sourceforge.net/

e gim http://glm.g-truc.net/

e Freelmage http://freeimage.sourceforge.net/

11


http://www.glfw.org/
http://glew.sourceforge.net/
http://glm.g-truc.net/
http://freeimage.sourceforge.net/

e Assimp Loader Library http://assimp.sourceforge.net/
e FreeType http://www.freetype.org/index.html
e DeviL http://openil.sourceforge.net/

Tools used to create the models

Game assets have been created in 3D Studio Max and Maya from multiple primitives with
separate materials, which then were combined into one texture and mesh and exported as
.obj model data.

12


http://assimp.sourceforge.net/
http://www.freetype.org/index.html
http://openil.sourceforge.net/

