Documentation AnonSpace
Second Submission, 22.6.2015
Wen Chao Chen 1129468
Johannes Dostal 1226714



Description

“AnonSpace” is a running game in wormholes. You control a spaceship of the anonymous
imperial galactic colony which has been stuck in a wormhole and your task is to maneuver the
ship through the wormhole while hacking satellites and avoiding obstacles.

Gameplay

The player controls a spaceship and has to hack as many satellites as possible during his run in
the worm hole. The purpose is to escape the wormhole while staying alive by preventing the
ship from crashing into the borders of the worm hole or into any obstacle. You can raise your
score by bypassing satellites. By reaching a certain level in a given time frame, you win the
game and the ship may escape the worm hole. Otherwise, you lose the game.

You have 15 seconds before you die, each collected satellite gives you additional 3 seconds to
survive. You have so reach 1000 points, in order to escape the wormhole and win the game.
For each second surviving in the wormhole, you earn one point. Each collected satellite gives
you additional 75 points.

Effects




CPU Particle System (+Instancing): is implemented in ParticleManager.cpp following
the instructions of
http://www.opengl-tutorial.org/intermediate-tutorials/billboards-particles/particles-instanci

ng

You can see the particles as the trail of the spaceship

Shadow Mapping + PCF: The main pipeline of ShadowMapping can be found in
ShadowMapManager.cpp. First, the depth values of the ship, the ghosts and the plane
obstacles are rendered into a framebuffer. The texture that was attached to the depth
framebuffer is then used for shadow mapping during the normal rendering phase of the
involved objects. For our shadow mapping, we decided to use a spot light which covers
all the objects of the level. To see the depth buffer, hit ‘Z’ on the keyboard as described
later in the chapter ‘Controls’. The tutorial sources used to implement this effect are:

O

o O O O O O

CGUE slides

OpenGL Superbible Sixth Edition
http://learnopengl.com/#!Advanced-Lighting/Shadows/Shadow-Mapping
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/
http://ogldev.atspace.co.uk/www/tutorial23/tutorial23.html
http://ogldev.atspace.co.uk/www/tutorial24/tutorial24 .html
http://ogldev.atspace.co.uk/www/tutorial42/tutorial42.html



http://www.opengl-tutorial.org/intermediate-tutorials/billboards-particles/particles-instancing/
http://www.opengl-tutorial.org/intermediate-tutorials/billboards-particles/particles-instancing/
http://learnopengl.com/#!Advanced-Lighting/Shadows/Shadow-Mapping
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-16-shadow-mapping/
http://ogldev.atspace.co.uk/www/tutorial23/tutorial23.html
http://ogldev.atspace.co.uk/www/tutorial24/tutorial24.html
http://ogldev.atspace.co.uk/www/tutorial42/tutorial42.html

Shadow Mapping

Normal Mapping: The normal mapping effect is implemented for every satellite (in this
case combined with the shadow mapping effect) and can also be seen at the borders of
the tunnel system. The tangent, bitangent calculation and VBO indexing are
implemented in SceneObject.cpp functions calcTangents(), computeTangentBasis() and
vbolndexer.cpp function indexVBO_TBN(). The data needed to perform these calculation
are provided by the object loader of the scene objects. The tutorial sources used for
normal mapping are:

o http://learnopengl.com/#!Advanced-Lighting/Normal-Mapping

o http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-13-normal-mapping/



http://learnopengl.com/#!Advanced-Lighting/Normal-Mapping
http://www.opengl-tutorial.org/intermediate-tutorials/tutorial-13-normal-mapping/

e Bloom: BloomManager.cpp includes the the main implementation of Bloom, while
Game.cpp only calls the various functions of BloomManager. In the first step, we render
the scene into framebuffer in order to get a texture, which is then filtered with a
bright-pass shader to get all bright parts of the scene. Then, the new texture is blurred
vertically and horizontally and then blended additive with the original texture. The
resulting bloomed scene is rendered to the screen with the help of a full-screen quad.
Bloom is usually activated, when a ghost obstacle collides with the ship, but can also be
activated manually with the keyboard, pressing ‘B’, as described later in ‘Controls’. For
the implementation, following tutorial sources were used:

o CGUE slides
o http://prideout.net/archive/bloom/index.php
o http://http.developer.nvidia.com/GPUGems/gpugems_ch21.html

'
Bloom Q
o \ A
5

Animated Objects

The animated objects in our game are the ghosts. While the ghost
moves up and down, the hand of the ghost does so too. In
addition to that, the hand rotates around the ghosts’ body. The
rotation direction of the hand (left or right) is determined by a
randomized variable.



http://prideout.net/archive/bloom/index.php

Frustum Culling

You can recognize, that view frustum culling is implemented, when hitting F2. So you see in the
console how many objects are currently rendered. We have a class AABB.cpp for the
Axis-Aligned Bounding Box and one class Frustum.cpp for the view-frustum. the functionality
itself is implemented for obstacles and satellites, since these two objects are the only ones, that

not allways are shown.

Frametime:A.016768
Frametime:B.016695
Frametime :@.016782
Frametime:B.016626
Frametime:B.016696
Frametime:A.H016674
Frametime:@B.016688
iew Frustum Culling: off
Frametime:B.016679
Frametime:BA.H038%714
Frametime :@0.8088999
Frametime:B.014615
Frametime:@.H01245%7
Frametime:B.016776
Frametime:@A.816754
Frametime:B.016473

Objectcount:5
Obhjectcount:5
Objectcount:5
Obhjectcount:5
Objectcount:5
Obhjectcount:5
Objectcount:5

Objectcount =163
Obhjectcount:163
Objectcount =163
Obhjectcount:163
Objectcount =163
Obhjectcount:163
Objectcount =163
Obhjectcount:163

Polycount
Polycount:5661
Polycount 5661
Polycount:5677
Polycount :56%77
Polycount:5677
Polycount :56%77

5661

Polycount:=112641
Polycount:112641
Polycount:=112633
Polycount:112631
Polycount:=112643
Polycount:112627
Polycount:112643
Polycount:112628

Controls

You control your spaceship with the w,a,s,d and arrow keys of your PC-keyboard. You steer the
spaceship upwards, to the left, downwards and to the right using the w,a,s,d keys and change
directions upwards, left, downwards and right with the arrow keys. The spaceship has a certain
velocity, and is moving forwards automatically. Satellites are hacked by bypassing.

Key Effect

W.A,S,D Steer up, left, down, right

Arrow Up, Left, Down, Right | Change directions upwards, left, downwards, right

M mute or unmute the sound

ESC Quit game

F1 pause game

F2 show FPS ingame and additional informations in the console.

(e.g. frametime and the number of rendered objects)




F3 turn wireframe on or off

F4 change the texture sampling quality between nearest neighbor
and bilinear

F5 change the mip mapping quality between off, nearest neighbor
and linear

F8 turn viewfrustum culling on and off

F9 turn transparency on and off

B turn Bloom on and off

4 turn depth buffer rendering on a small quad on and off

Implementation

e The camera is not freely movable, because it should only follow the spaceship’s trail.
The position is dependent to the position of the ship.

e The only moving object is the spaceship, which moves automatically towards the
direction it faces and can change position and direction according to the user’s input
(see “Controls”).

e The game is capable of reading obj, texture and bitmap files, so object normal vectors
are provided and every object in the scene has a texture. There is a global light source
for the whole scene.

e Bullet physics is used to detect collisions between the ship and obstacles. Detect a crash
into the wormhole or recognize when a satellite is hacked.

e Some of the models are from different sources of the internet. e.g.
http://www.3dvia.com/models/04102C3A0C1E3002/simple-low-poly-cargo-spaceship. All
models are reworked or created by ourself in Blender.

Features
e [ntuitive controls
e Start, Loading, Game Win and Game Over Screens
e Object and image loading
e Collision detection with Bullet physics

Libraries


http://www.3dvia.com/models/04102C3A0C1E3002/simple-low-poly-cargo-spaceship

Following Libraries were used and included in the project:

GLEW: http://glew.sourceforge.net/

GLFW: http://www.glfw.org/

glm: http://glm.g-truc.net/0.9.6/index.html

Bullet physics: http://bulletphysics.org/wordpress/
configdcpp: http://www.config4star.org/

FMODEX: http://www.fmod.org/download/#Previous



http://glew.sourceforge.net/
http://www.glfw.org/
http://glm.g-truc.net/0.9.6/index.html
http://bulletphysics.org/wordpress/
http://www.config4star.org/
http://www.fmod.org/download/#Previous

