o
maafe WeaSe
A'/\Val@

Implementation:

The game is written in C++. We use OpenGL 4.0. For collision detection we use the
ColDet 3D library and for calculating the frame time we use GLFW. To import the Models
we use the FBX SDK. Further we use GLEW for loading OpenGL Extensions and for
playing sound we use the sound library Irrklang.

To control the weasel we use an Xbox 360-Controller. To use the Xbox Controller we use
XInput.

Gameplay:

The game is a comic-style jump'n'run / platformer. You play a weasel with a baseball
bat. The goal is to collect all the crystals scattered around the level. The glow effect of
the crystals helps you to find them. Some of the aliens are also carrying crystals with
them. They won't give it to you willingly though, so you have to whack them with your
baseball bat to get to it. That means avoiding aliens is not an option to win the game.
Further you have to jump from platform to platform to get the remaining crystals. We
also have implemented moving platforms.

You start with three hearts. If you lose them, you die and have to start all over again. But
there are several items floating around to help you.

— Hearts will replenish your life, if you have been hit.

— Touch the floating party hats in order to gain the duck power! There's nothing
aliens hate more than a vicious rubber duck! For a short time period you will be
invincible and can just run over the aliens, but be aware: as soon as the effect
wears off, you're vulnerable again!

Al

For the enemies we used a simple Al. Each alien has 3 Waypoints. It walks between its 3
waypoints until the player reaches a determined distance to the aliens. Then the player
is followed by them. The aliens only move, if you get close. They are a nervous bunch
and get very excited at the hero's approach. This was necessary to have enough
performance in our game, because when every alien would walk all the time, then the
frame rate would drop.

Camera:

We use a third-person camera, but you can freely move the camera around with the
right control stick.

Controls:



ATTENTION! : You can play the game with the keyboard, but it is a lot better to play it
with a controller, because it is not made for the keyboard!

Walk Around: You can walk around with the left analog stick or with the WASD keys on
the keyboard.

Look Around: You can look around with the right analog stick or with the mouse.
Jump: You can jump with the A-button or with the space bar on the keyboard.

Hit: You can hit with the X-button or the left mouse button.

Jump

-

Look Around

Features:

All models are self-made, even the landscape. They are modeled in Autodesk Maya. For
setting the positions of the aliens and the crystals we load the scene into 3DS Max and
wrote a script in Maxscript to export the positions in a text file, which we load in our
engine. Also all of the textures are self-made. For this we used Paint.net and Photoshop.
We also have used a high-level game sound engine called irrKlang so you can enjoy some
music and simple 2D-sound effects, which make the gaming experience more lively. The
following tools were used to create sound:

— Guitar Pro 5 to create music (except the duck mode song, which is borrowed from
Squaresoft's Final Fantasy 8)
— Audacity to re-master sound effects / music

The background sound of the game is self-made.
We have got our own, simple HUD, which shows your current hearts and collected
crystals.



Effects:

We implemented a toon shader, which is used for all models except for the skybox (we
made a toon-like texture for it in Photoshop). For this we used edge detection. The
objects are first rendered with discrete light levels into a frame buffer object. We render
the color image and the depth image at one render pass and in a second render pass, we
load the depth texture in the shader and use an edge detection filter to make black
contours along the edges. Then we render only the edges into a texture and in the next
render pass, both the original color texture and the texture with the edges are rendered
on the screen with additive blending. We have implemented this effect according to the
tutorials listed in the chapter “Sources”, but for the edge detection we used the depth
texture instead of the color texture and a Sobel operator. The following figure shows a
screenshot, which shows the effect:

Further we implemented glow. It is used for the crystals to make it easier to find them.
For this we render to a third texture in the first render pass, but only with the crystals in
it. The other objects are coloured black. Then in a second pass we render that texture
into a smaller texture. In the next pass we blur the texture in the horizontal direction
and in the next render pass we blur the texture vertical. Then in the final render pass,
we render this texture also on the screen using alpha blending. For the glow effect we
used the lecture slides.

The crystals are also rendered transparent. You can see the glow effect in the following
screenshot.



The third effect we implemented is GPU Vertex Skinning. We use this effect for the
enemies (aliens) and for our weasel. We made the animation in Maya and then
imported the animation into our engine. With the FBX-SDK we got the skinning matrix,
the bones and the skinning weights, which we load into the vertex shader. We have
implemented this effect according to the tutorial listed in the chapter “Sources”.

We also implemented View Frustum Culling. You can see the effect in the debug

window, which shows you how many objects are culled and which effect it has on the
frame rate.

Light and Textures:
All of the models are lightened and textured, except for the sky, which is only textured.

We have implemented ambient and diffuse light. We have one directional light source,
the sun. All of the textures are self-made.

Achievements:

We included the duck and the party hat, self-made textures and a self-made background
sound. When the player collects a party hat the weasel is transformed into a duck.

OpenGL Features:

Upon start a console window is opened, which shows the effect of the culling, the frame
rate and the controls for switching on/off the OpenGL features. In the following table
you can see the controls for this:

Key Effect

F2 Frame time on/off

F3 Wireframe on/off

F4 Textur-Sampling-Quality: Nearest

Neighbor/Bilinear




F5 Mip Mapping-Quality: Off/Nearest

Neighbor/Linear
F8 View frustum culling on/off
F9 Transparency on/off

Configuration:

We have made a configuration file named config.txt in the PositionFiles
folder. When you write the number “1” in it, the game is rendered in full
screen mode and if you write the number “0” in it, the game is rendered in a
smaller window.

Modelling Tools & Libraries
Tools used for model creation

— Autodesk Maya for model creation /-animation (Models are FBX-files).
— Paint .NET/GIMP to export TARGA-Files for textures.
- Photoshop

We have used the following libraries in our Project:

- GLEW (1.9.0, win32)

- GLFW (2.7.7, win32)

— coldet ( library for simple collision detection)
— irrklang (high-level game-sound api)

- FBX SDK

Sources
Tutorials

FBX SDK Documentation: http://docs.autodesk.com/FBX/2013/ENU/FBX-SDK-
Documentation/index.html

HUD: http://www.opengl-tutorial.org/intermediate-tutorials /tutorial-11-2d-text/
Toon Shader: http://www.lighthouse3d.com /tutorials/glsl-tutorial /toon-shading/
Edge Detection: http://coding-experiments.blogspot.co.at/2010/06/edge-
detection.html

Vertex Skinning: http://silk-ge.blogspot.co.at/2010/11 /tutorial-vertex-skinning.html
Glow: Repetetorium Slides

http://www.opengl-tutorial.org/

http://www.rastertek.com/

Tools

Autodesk Maya 2013 - http://www.autodesk.de/products/autodesk-maya/overview
Paint .NET - http://www.getpaint.net/

GIMP - http://www.gimp.org/

Guitar Pro - www.guitar-pro.com/




Audacity - http://audacity.sourceforge.net/
Photoshop - http://www.photoshop.com/
3ds Max - http://www.autodesk.com/products/autodesk-3ds-max/overview

Libraries

GLEW - http://glew.sourceforge.net/

GLFW - http://www.glfw.org/

irrklang - http://www.ambiera.com/irrklang/

coldet - http://coldetdotnet.sourceforge.net/

FBX SDK - http://docs.autodesk.com/FBX/2013/ENU/FBX-SDK-
Documentation/index.html

Sound
Sound effects are all from http://www.freesound.org/.
The duck mode-song is Odeka de Chocobo from the Final Fantasy 8 Original Soundtrack.




