
 21

Computergraphik 1 – Textblatt engl-06 Vs. 10
Werner Purgathofer, TU Wien

Attributes of Graphics Primitives

Graphics primitives can be created with a number of properties, also called attributes. This chapter also
includes some filling algorithms, which are considered to be attributes of polygons, too.

█ Attributes of (Points and) Lines

Besides well known line attributes like stroke width, line pattern, color or stroke type, there exist some other
attributes which are less obvious. One of them is the type of line ending and the apex shape (when two lines
end up in a corner) at thicker lines:

Furthermore, anti-aliasing is an important topic for lines. More details follow in later sections.

█ Attributes of (2D-)Polygons and Surfaces

Obviously the attributes of a surface’s edges are the same as those of
simple lines. But now we additionally have to take into account the
surface itself, which can be provided with a filling. Filling patterns are
normally created by repeated application of a basic pattern originating
from some reference point (also called seed point).

Many applications also require creating a combination of the newly drawn pattern and the background.
There are several different ways which base upon logic operations like AND, OR, XOR. Generally the
blending of color is performed by a linear combination of the existing background color B and the given
foreground color F: P = t*F + (1-t)*B

Triangle Rasterization
For filling triangles, the use of barycentric coordinates is common.
Each point in the plane is represented as weighted average of the 3
triangle vertices: P=αP0 + βP1 + γP2 .
(α, β, γ) are then called the barycentric coordinates of the point P,
with α+β+γ=1.
All points with 0< α, β, γ<1 are inside the triangle.
When filling a triangle, the barycentric coordinates of each pixel of a
(preferably tight) bounding area are calculated, and all pixels with
0< α, β, γ<1 are rendered. The rendering color can easily be linearly interpolated from corner values using
the available weights (α, β, γ). If we denote the line through P1 and P2 with l12(x,y) = a12x+b12y+c12=0 then
α of the point P(x,y) is α = l12(x,y) / l12(x0,y0), β und γ analogous.
To avoid rendering the common border of 2 adjacent triangles twice, only pixels are rendered that lie inside
the triangle borders. Pixels that are exactly on a border need a special treatment.

When filling a more complex polygon it has to be defined which parts are “inside” and which areas are
“outside” (refer to “01 Graphics Primitives”). There are two categories of filling methods. The scan-line
method intersects each scan-line with the polygon (or the surface border), and parts which lie inside (spans)
are filled. The flood-fill method fills the surface originating from a seed point in all directions until the
whole polygon is recognized to be filled.

 22

Scan-line Filling
All edges of the polygon are sorted by the
lower y-value of their endpoints (bucket sort).
For each edge, the following information is
stored:
 [max. y-value, start x-value, slope]
Using this data structure, for each scan-line in
the list (bottom up) we create a list of “active”
edges, which are those that intersect that scan-
line. Then the scan-line is filled from the first
intersection point to the second one, from the
third to the fourth, from 5th to 6th and so on.

The list of active edges is generated incrementally. Starting with zero active edges, for each y-value we can
look up in the sorted-edge-list, whether there is a new edge beginning there. If so, this edge is added to the
current active-edge-list. At the same time, all edges whose maximum y-value has been exceeded are
removed (not active anymore). The active edges in this list are always sorted by their intersection points
(from the left to the right), so that drawing can always be performed instantaneously.

The intersection points can also be generated incrementally. Beginning from the (exact) intersection point
(xk,yk) of a scan-line with an edge, we get the next higher intersection point (xk+1,yk+1) by
xk+1= xk+1/m and yk+1= yk+1. Now it also becomes clear why we’ve stored the slope 1/m in each node of the
edge list.

If a corner of the polygon lies exactly on a scanline we have to
ensure that the number of intersection points for this point is correct.
Some points have to be counted once, others twice (see figure). To
avoid this problem, the point coordinates are often shifted up or
down by a small value ε. This value has to be so small that it is not
recognized, but large enough to move the point above or below the
scan-line.

Flood-fill Algorithm
Originating from some start point (reference point, seed point), this algorithm fills in all directions until
hitting the border. This border can either be defined explicitly, e.g. by a border of some certain color, or
implicitly, e.g. in the case that an already colored surface is filled with a new color. There are also variants
mixing implicit and explicit definitions. However, this definition is just used to formulate the stop criterion
for the algorithm. Without loss of generality, for the following code we want to assume that the surface to
be filled is already drawn in a defined color, and shall be filled with a new one.

Proceeding in all directions requires a definition of the allowed directions.
4-connected means that a connection is defined only along the four main
directions, 8-connected also accepts diagonal pixels as connected. It can
easily be understood that for a 4-connected surface an 8-connected border
is sufficient, but an 8-connected surface requires a 4-connected border line.

Floodfill for 4-connected surfaces can easily be implemented as follows:
void floodFill4 (int x, int y, int new, int old)
{ int color;
 /* set current color to new */
 getPixel (x, y, color);
 if (color = old) {
 setPixel (x, y);
 floodFill4 (x–1, y, new, old); /* left */
 floodFill4 (x, y+1, new, old); /* up */

 23

 floodFill4 (x+1, y, new, old); /* right */
 floodFill4 (x, y–1, new, old); /* down */
}}

However, this procedure creates a filling order which leads to
a very high recursion depth, generally up to the number of
pixels to fill. The upper left of the figure shows the recursion
order, the long red arrow inside the polygon shows the depth
of the recursion for this particular case.

To avoid this high recursion depth, filling can be performed
iteratively in the horizontal direction and the recursion is
only applied vertically. Of course we have to ensure that all
spans above and below are called recursively (a span is a
horizontal, continuous series of pixels which are processed
collectively).

The example to the right demonstrates the filling order, where one
of the pixels 1, 2 or 3 was chosen as start pixel. Recursion is first
performed upwards, then downwards. At each call all spans in this
direction have to be processed. After the span 4 to 11, the
recursion goes upwards and draws from left to right, then goes
downwards and draws from left to right as well. Already filled
parts are recognized and the recursion terminates (e.g. going
downwards from 4 to 11, 1 to 3 is already processed). Although
the total depth of recursion theoretically can be very high with this
method too, in practice it is proportional to the number of
scanlines of the polygon.

█ Attributes of Text

The attributes that can be assigned to text are common knowledge nowadays: Font (e.g. Courier, Arial,
Times, Broadway, …), style (normal, bold, italic, underlined, …), size, text direction, color, alignment
(left, right, centered, justified) and so on.

█ Attributes of 3D Polygons

Generally, 3D polygons are surface elements of objects in 3D space. Therefore their attributes mostly
describe properties of those objects’ surfaces: color, material parameters (roughness, absorption, …),
transparency, texture, geometrical microstructure, reflection behavior etc., which create scene dependent
effects under a given illumination. Additionally, normal vectors and texture coordinates for each vertex are
often included to allow for fast and adequate calculation of the polygon’s appearance. Later we will see how
this is used efficiently.

█ Aliasing and Anti-aliasing

Aliasing effects ['eiliæsiη] are errors which result from the transformation
(discretization) of analog data to digital information. The most prominent aliasing effect in computer
graphics comes from the fact that in raster images pixels can store just one single value, while they actually
represent a whole (small) area of the image containing a range of signal values (loss of information). Visible

 24

aliasing effects can be caused by too low resolution, too few colors available, too few images per second,
geometrical errors, and numerical errors.

Anti-aliasing is the term for methods that reduce the
unwanted aliasing artifacts. Since an enhancement
of hardware is unrealistic in most cases, software
techniques are mainly used. In the following we
only cover anti-aliasing that treats the resolution
problem. Beside the jagged edges some other
known effects are: disappearance of small objects,
discontinuous narrow objects, equal-sized objects
appearing in different size, complete destruction of
fine detailed textures (see figure to the right).

The cause of aliasing is an insufficient sampling rate of the original image. The theoretical basis is
described by the Shannon Sampling Theorem. This theorem says
that information can only be correctly reconstructed if the used
sampling frequency (sampling rate) is at least double as high as
the highest information frequency within the picture. This limit is
called the Nyquist limit. The figure shows how a too coarse
sampling rate of a signal (curve) can lead to a completely false
reconstruction (polygon strip). Such errors can be reduced either
by prefiltering of the input signal or by post-processing of the
resulting image. In any case prefiltering leads to better results than
post-processing. The central strategy of prefiltering is super-
sampling (also called oversampling).

Anti-aliasing of Lines
Pixels which are more centrally intersected by some line
should get more of the line color than pixels which are just
touched slightly by the line. Therefore we subdivide each
pixel into a number of sub-pixels and choose a result intensity
for the pixel proportional to the number of sub pixels which
lie on the line. For broader lines we choose the intensity of
the line color according to the percentage of coverage of the
pixel by the line. Because a pixel’s center is more relevant
than its border, sometimes sub-pixels in the center get more
weight than those at the pixel’s border („weighted
oversampling“).

Anti-Aliasing of Polygon Edges
For polygon edges we have the same alternatives as for lines: either we work with
super-sampling or we calculate the pixel’s degree of coverage by the polygon
analytically. The calculation of the degree of coverage is done at raster
conversion time, i.e. when creating the border lines and the filling of the polygon. When calculating the
endpoints of the spans (scanline filling method), we have enough information available to extract the degree
of coverage value almost directly without further calculation. We recall the decision variable pk of the
Bresenham line algorithm, whose sign indicates which pixel is to be drawn next. This variable can be
transformed in a way such that its value equals the percentage of coverage of the last pixel: p' = y – ymid ,
where ymid = (yk + yk+1)/2, has the same sign as pk. If we use p = p' + (1 – m), then we have to compare with
(1 – m) instead of 0 though, but 0 ≤ p ≤ 1 is guaranteed, and p equals the degree of coverage at the point xk.
In this way anti-aliasing can be calculated incrementally very
quickly. For other angles 90°-rotations and/or mirrored versions of
this method are used.

