
 17

Computergraphik 1 – Textblatt engl-05 Vs. 10
Werner Purgathofer, TU Wien

Visibility-Determination

To view scenes in a plausible and correct way, all parts which are
not visible from a specific point of view, have to be omitted. In
particular, these are the backsides of opaque objects or parts which
are occluded by other objects. This is called hidden-line- or
hidden-surface-removal.

Depending on the complexity of the scene, the types and data-
structures of objects, the available hardware and requirements of the application, different algorithms for
visibility determination can be used. When using object-space methods, the location of objects is compared
to each other and only front (visible) parts are drawn. When using image-space methods, for every part of
the image the visibility is determined separately. The following explanations do not take transparent objects
into account.

█ Backface Detection (Backface Culling)

Backface Culling is not a complete visibility determination
method. With it, simply all polygons, which have a normal
vector pointing away from the viewer and therefore cannot
be visible, are eliminated to reduce the cost of subsequent
steps. On average, 50% of the polygons are removed by this procedure. To calculate which polygons will be
removed when using orthographic projection, the scalar product of the view vector with the surface normal
is calculated (Vview·N > 0 → invisible); with perspective projection, the view point (x, y, z) is substituted
into the plane equation (Ax + By + Cz + D < 0 → invisible). [assumptions as in “Polygon Lists”.]

█ Z-Buffering (Depth Buffering)

The z-buffering algorithm solves the problem of visibility for a specific image resolution in the following
way: For each point of the image, in addition to the color information, the information about the position of
the displayed object is stored in an own storage. Since the viewing-direction is usually the (minus) z-
direction, the x- and y-values correspond to the image-plane coordinates and only the z-value needs to be
stored. So in addition to the image-buffer (frame buffer) an additional buffer is needed, which can store the
z-value for each pixel. This buffer is called z-buffer or depth-buffer. Using a z-buffer all objects can be
drawn in an arbitrary order. The z-values of the object which is to be drawn (which is a polygon in most
cases) are calculated and compared to the z-values of the pixels onto which the object is going to be drawn.
If a new z-value is nearer to the viewer (thus, usually larger), then the new object color is drawn there,
replacing the old image value and also the z-value in the z-buffer is updated. Otherwise, the object is
occluded and no action is necessary:

for all (x,y) (* initializing the background *)
 depthBuff(x,y) = - ∞
 frameBuff(x,y) = backgroundColor
for each polygon P (* loop over all polygons *)
 for each position (x,y) on polygon P
 calculate depth z
 if z > depthBuff(x,y) then
 depthBuff(x,y) = z
 frameBuff(x,y) = surfColor(x,y)
 (* else nothing! *)

The z-values can be efficiently calculated incrementally for flat polygons. The big advantage of z-buffering
is that the objects (polygons) do not have to be sorted.

 18

█ Scan-Line Method

With scan-line method the correct visibility is calculated for each horizontal line (in the example, from top
to bottom, thus y decreasing). In doing so, it can be exploited that two consecutive pixel-lines (scan-lines),
often have similar visibility properties.

Starting with a table containing all edges of the
polygons sorted by their maximum y-value and
an associated polygon table, for every scan-
line a list of active edges is created. This is
done incrementally from the edges of the last
scan-line: edges which have ended are
eliminated and the next edges of the sorted
edge table are checked, if they have already
begun. After all intersection points from a
scan-line with all edges are calculated in this
way, they are sorted by their x-value (left to
right). Between each pair of intersection points
it has to be determined, which polygon is
nearest to the viewer; this is the visible one and
will be drawn along this scan-line.

█ Depth-Sorting Method

The principle of the depth-sorting algorithm is to sort all polygons from back to front and then draw them in
this order. Since all hidden (occluded) parts are farer away than the occluding parts, the resulting image has
correct visibility (painter’s algorithm). The main expense is the sorting, which has to be done in such a way,
that no polygon (partially) occludes any other one which comes later in the list (and is thus nearer to the
viewer). This is done in two steps: first an approximate sorting is done quickly, and then it is checked,
whether the sorting is right. If not, the list will be resorted.

 1. Approximate sorting: sort the polygons according to the smallest z-value (farthest polygon).
 2. Compare each polygon S with each (!) other polygon S’:
 (* assuming that S lies behind S’ *)
 (* now a series of tests follows with increasing complexity, until sorting is accepted as correct *)

a. The biggest z-value of S is smaller than the smallest z-value of S’→ sorting correct.
b. The x- or y-intervals do not cross → sorting correct.
c. All vertices of S lie behind the plane of S’ → sorting correct.
d. All vertices of S’ lie in front of the plane of S → sorting correct.
e. The projections of S and S’ onto the xy-plane do not intersect (see

image to the right) → sorting correct.
f. Sorting is probably wrong (see image where S’ is hidden behind S) → swap and check sorting

again. If the sorting is wrong again, then a special case has occured (see image) and has to be
solved by splitting one of the polygons:

 special cases that can only be solved by splitting a polygon

 19

█ Area-Subdivision Method

Similar to the quadtree representation of images, simple problems are solved in low resolution and more
complicated ones are simplified by subdividing the area into 4 quarters. If applied recursively down to the
image resolution, a pixel-accurate solution of the visibility problem is achieved.

To do so, a method is needed which quickly
discovers the location of a polygon’s projection
onto a (quadratic) image-window. There are
four possibilities: (1) the polygon covers the
whole window, (2) the polygon lies partly inside and partly outside the window, (3) the polygon is
completely inside the window or (4) the polygon lies completely outside the window.

There are three simple visibility decisions:
1. all polygons lie outside the window → done
2. only one polygon has an intersection with the window
→ draw this polygon

3. one polygon covers the whole window and lies in front
of all other polygons in the window area → draw this
polygon

If all three tests fail, then the window is divided into 4
quarters, which then will be processed recursively. Note
that polygons which had already been completely outside a
window, are also outside its child windows. Likewise, if a
polygon has covered the whole window, all its child
windows will also be covered by this polygon. If the child
window has reached the size of only one pixel, the nearest
polygon is chosen. As can be seen in the example, this
happens along all edges at which the visibility changes.

█ Octree

If the scene is represented as an octree instead of with polygons, then for every view direction the data
structure already knows which side is in the front and which one is on the back. The data structure can be
rendered recursively in the following way: first, in a cube, render the child cube which is farthest away from
the viewer, then render the three next-nearer child cubes, then the next three, and finally the nearest one.
One possible ordering can be seen in the example below:

Alternatively, the rendering can be done from front to back. Then all the areas on which something has been
drawn already have to be stored, so that only those which will remain visible are drawn. The advantage of
this data structure over others is that it implicitly knows which parts are in the front and which ones are in
the back.

 20

█ Ray-Casting

Ray-casting is a method of visibility determination that explicitly calculates for each pixel what is visible
there. To do this, a ray, that is a straight line, is shot from every pixel into the scene. Thinking backwards,
through this ray the light is transported from the scene onto the image plane or, respectively, the viewer. If
this ray is intersected with all objects or polygons of the scene, a set of intersection points is obtained and
the one which is nearest to the viewer is chosen. The color of the surface at this intersection point
determines the color of the pixel through which the
ray has been shot. If this is done for all pixels, the
result for each pixel is the color of the nearest
object, which is the visible one.

With ray-casting it is not only possible to render
polygons in an easy way, but also other types of
surfaces (like e.g. free-form-surfaces) for which the
intersection with a line is computable. As explained
later, usually the surface-normal is needed at the
intersection points to be able to calculate useful shading. On the contrary, ray-casting is quite expensive
since for every pixel (that are a few million for a full screen) an intersection has to be calculated for every
object (and these can by thousands to millions). That is why an efficient implementation of the intersection
test and further optimizations are necessary.

Ray-casting is a simple variant of ray-tracing, with which many other optical effects can be simulated. This
will be explained in later chapter.

Ray-Casting =
for each pixel of the image-plane:
 generate a line through the pixel in viewing-direction (“viewing-ray”)
 intersect the ray with all objects
 choose the nearest intersection point to the viewer
 color the pixel with the color of the surface at this intersect. point

█ Classification of the Algorithms

Let us categorize the algorithms according to if they operate in object- or image-space. This is sometimes
ambiguous, but overall the following holds:

Object-space methods: backface culling, depth sorting, octree
Image-space methods: z-buffering, scanline method, area subdivision method, ray-casting

