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Abstract

We introduce a new concept for a geometrically based feature preserving recon-
struction technique of n-dimensional scattered data. Our goal is to generate
an n-dimensional triangulation, which preserves the high frequency regions via
local topology changes. It is the generalization of a 2D reconstruction approach
based on data-dependent triangulation and Lawson‘s optimization procedure.
The definition of the mathematic optimum of the reconstruction is given. We
discuss an original cost function and a generalization of known functions for
the n-dimensional case.

1 Introduction

The continuous reconstruction from discretely sampled data is an important
part of data processing. Reconstruction is necessary to determine values at
arbitrary positions, not just those at which the data sample is available. Such
discrete data sets can be acquired by digital photography in 2D or computed
tomography (CT) and magnetic resonance imaging (MRI) in 3D. Another way
of data acquisition is mathematical simulation of certain phenomena using for
example finite element methods.

In this work we are introducing a reconstruction technique based on topo-
logical changes of triangulations. The topology of the resulting mesh is driven
by the features represented in the data. Our optimization process turns an
arbitrary triangulation of discretely sampled data into a feature-preserving
mesh.

The most common reconstruction technique for regularly placed data is
convolution-based resampling using reconstruction filters. The drawback is
that the features having other directions then the directions of the applied 1D
basis functions are not reconstructed very well. This results in blurry artifacts
at the border between different features. Geometrically based reconstruction,
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denoted as data-dependent triangulation (DDT) was introduced by Dyn et
al. [DLR90]. In Figure 1 the output from convolution and triangulation based
techniques is shown, at 1000% magnification. This kind of triangulation allows
the generation of inevitable long and tiny triangles to preserve high-frequency
features, and can be applied for arbitrary scattered data. The original DDT
is limited to two dimensions and its extension to higher dimensions is not
trivial. Its generalization into arbitrary dimension is the main scope of our
work. In volume graphics this method can be applied for reconstruction using
both regular and irregular grids. Therefore the target applications are tasks,
where the reconstruction of sharp features is crucial.

Fig. 1. Reconstruction result with bicubic filtering (left), data-dependent triangu-
lation (right) at 1000% magnification.

The contributions of this paper are the following:

e n-dimensional reconstruction using a data dependent triangulation
approach

e a mathematical definition of the optimal reconstruction using tri-
angulations

e a new cost function and generalization of existing functions

This paper is structured as follows. In Section 2 we briefly survey previous
work done on DDT. Section 3 defines basic concepts of n-dimensional triangu-
lations and the problem of the extension into higher dimensions is highlighted.
In the same section the n-dimensional DDT is introduced. Section 4 presents
a feature preserving triangulation algorithm and estimates the usability of the
approach. In Section 5 we show a number of examples that demonstrate the
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effectiveness of our concept. Finally in Section 6 we draw conclusions from
the results and we outline future work possibilities.

2 Related Work

A general notion for interpolating given scalar data over an n-dimensional
domain is called scattered data interpolation, and mathematically can be ex-
pressed as:

F(Jii,l,xi’g,...,l‘i’n) = Zi,i = 1,...,777,,

where V ={V; = (;1,%i2,...,%in)} € R" is a set of not all cohyperplanar,
distinct points in the domain space, and z; are the measured data values.
The goal of the reconstruction is to evaluate the function value F(x) for an
arbitrary point of the domain. In the rest of this section we give a short review
of the related research work done in this field.

Data-dependent triangulation (DDT) is a geometrically based reconstruc-
tion technique developed by Dyn et al. [DLR90]. It is a special case of op-
timal triangulations. A general survey on optimal triangulations was done
by Bern and Eppstein [BE95]. The quality of the resulting triangulation is
defined through a special function called cost function and the optimization
algorithm. It fits the measured data values with a triangle mesh, creating a
piecewise linear interpolation. In contrary to other mesh generation methods
DDT maps the alignment of edges to the underlying data and organizes the
simplicial structure into a feature preserving mesh. The application of this idea
to image reconstruction has been done by Yu et al. [YBS01]. Improving the
image reconstruction quality has been the scope of our previous work [Tot04].
Kreylos et al. [KHO1] used it for image compression with a decimation process,
based on a simulated annealing optimization technique.

Several algorithms have been developed and different optimization tech-
niques have been applied to generate data-dependent triangulation in the 2D
case. Genetic optimization technique was introduced by Kolingerové [Kol99].
The data dependent triangulation technique combined with simulated an-
nealing was first introduced by Schumaker [Sch93]. A real-time version was
presented by Su and Willis [SW04]. This pixel-level data-dependent triangula-
tion is limited to regularly placed image data. The results from this simplified
version are not as convincing as from other triangulation based techniques.
Battiato et al. [BGMO04] used the concept of a triangulation based technique
for creating vector format images from raster data.

Typically, the above mentioned approaches assign the cost function values
to the edges in the triangulations. Brown [Bro91] came up with cost assigning
to vertices. This idea is called vertex-based data dependent triangulation, and
it is a useful improvement of the basic approach.

In the 2D case there is a relation between the Delaunay triangulation
of the terrain surface and the data-dependent triangulations. Both can be
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constructed with Lawson‘s optimization process, also called flipping algo-
rithm [Law77]. The difference is only in the criterion which decides when
to take optimization steps. In higher dimensions this optimization technique
fails in the creation of the Delaunay triangulation [Joe91]. Only its modifica-
tion with a special incremental insertion produces the Delaunay n-dimensional
triangulation.

Feature preserving triangulations for volume data sets with a mesh refine-
ment technique was studied by Marchesin et al. [MDMO04] and Roxborough
and Nielson [RN00]. Both approaches are based on the longest edge split
method.

Other reconstruction techniques are numerical methods applicable for scat-
tered data reconstruction, like C' methods in the 3D case by Nielson [Nie93].
these techniques is not as good as Polygonal representation has better read-
ability and easier handling compared to analytical description.

An initial approach to the extend data-dependent triangulation approach
into 3D has been proposed by Lee [Lee00]. Lee used the simulated annealing
technique to get an optimal data-dependent mesh. This may result in artifacts,
as we will show later in Section 5. In the following section we introduce the
general approach to n-dimensional triangulation.

3 N - dimensional triangulation

A correct description of triangulation in arbitrary dimension requires to use
some definitions from simplex theory. We selected Edelsbrunner‘s and Shah‘s
terminology [ES92].

The convex hull (conv) of k+1 affinely independent points in R", marked
as set 1" is a k-simplex, denoted by op, where 0 < k < n. For subsets U C T,
simplices oy are called faces of op. A collection of simplices, IC, is a simplicial
complez if:

(i) The faces of every simplex in K are also in K.
(ll) If or, o € ]C, then o Nop = oTrnT!

Let V be a finite point set in R". Usually a triangulation of V is defined
as a simplicial complex so that V is the set of O-simplices (vertices) and the
underlying space of the complex is the convex hull of V. A simplicial complex
K is a triangulation of V if:

(i) Each vertex of K is a point in V.
(ii) The underlying space of K is conv( V).

The content of the n-simplex is its generalized volume (in 2D area, in 3D
volume, etc.).

From the definition of the triangulation above we can see that it is a C°
continuous reconstruction. The number of possible valid mesh configurations
is exponential in the number of elements in the discrete data set.
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Traditional (not data-dependent) triangulations usually avoid the genera-
tion of long, bad shaped k-simplices (triangles), because these simplices are
not well suited for the finite element method used in simulations. However,
such simplices are very suitable for reconstruction of areas where a function
has high derivatives in one direction as compared to other directions. In im-
ages (2D domain case) such areas correspond to edges, in volume data (3D
domain case) to surfaces of volumetric features. Our goal is to reconstruct
feature boundaries sharply and correctly using a reconstruction grid adapting
to the underlying data structures.

In Figure 2 a part of an image with a boundary between two constant
regions is shown. The reconstruction process first converts the image into
a height-field representation based on the underlying sample (pixel) values.
The height represents the intensity value at a particular pixel position. The
initial triangulation is iteratively optimized in order to preserve the feature
boundaries. The differences to the initial mesh appear only close to the feature
boundary. Figure 2 shows of the final height-field of the feature-preserving
triangulation.

Fig. 2. Shape of the triangles at the border between different features.

In DDT applications cost functions are used to control the shape of the
resulting mesh. The task of the optimization process is to improve the mesh
via topological changes with regard to the cost function. Cost functions in
2D can be assigned to vertices (this technique is called verter based DDT),
to edges, or to triangles. Most of the existing functions are defined for edges.
Generally, cost functions assign a cost to every k-simplex in the triangulation,
according to some local (not strictly geometrically based) property, where
k =0,...,n and n is the dimension of the domain space of the scattered
data.

Different triangulations in 2D have the same number of edges. Thus, a
topological change can not alter the number of edges in 2D. The goal of the
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reconstruction is to minimize the sum of the cost function weights of particular
simplices. We get a structurally identical problem to the minimum weight
triangulation problem [FNP96], where the task is to find the triangulation
with the minimum cost:

cost(Koptimal) = mingea (D .cxc(cost(e))),

where Koptimar is the triangulation generating the minimum sum among the
possible configurations marked as {2 and e are simplices assigned with the
cost function. However, this problem belongs to the open problems of compu-
tational geometry and only its approximation can be computed in polynomial
time. In previous work the global optimum was not defined and various heuris-
tics were used for local improvements [YBS01, KHO1].

A generalization to higher dimensions based on a constant number of sim-
plices (edges in the 2D case) is not straightforward. The number of simplicial
components of the n-dimensional triangulation in 3D and higher dimensions
depends on the specific triangulation. For example if in 3D we decide to assign
costs to faces (2-simplex) the sum changes not only due to the optimization
steps but also dependents on the number of faces in the triangulation (see
Figure 5). Tt is necessary to find a solution independent of mesh connectivity
changes. A vertex-based data-dependent triangulation satisfies this criterion,
because the number of vertices (0-simplices) remains unchanged. However, de-
signing of a cost function for the vertex-based approach is not an intuitive task
even in the 2D case. In higher dimensions this becomes even more difficult.

Our solution is based on the observation that the convex hull of the scat-
tered points also remains unchanged. That means that the volume is constant
irrespective of the triangulation, and the task of reconstruction can be for-
mulated as follows: the optimization process in the n-dimensional case should
assign low weights to m-simplices which are well aligned with the underly-
ing data. This means the minimizing of the weighted volumes of n-simplices
summed over the entire space of the convex hull. The exact mathematical
description looks as follows:

COSt(ICoptimal) = minnefg(zakeK(V(Jk) . w(ak))),

where oy, is an n-simplex, V(oy) is its volume, and the assigned weight function
w(og). Koptimar 1s the simplicial complex with minimal weighted volume in
the set of possible configurations denoted as (2. This observation is useful
only if we can easily and intuitively find feature-preserving weight functions.
A simple approach can use the variance property for weight assignment. Such
an idea can be based on the preservation of low variance regions. Therefore
the generation of (n — 1)-simplices (faces) with low variance is preferred. This
implies a weight function based on the variance of the function values in the
n-simplex

w(oy) = Variance(zi,, Zkys - - > Zkpi1)s
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where w(oy) is the weight function for the oy n-simplex and zg,, i =
1,2,...,n 4+ 1 are the known function values in the simplex vertices. Fig-
ure 3 illustrates the example of a 3D domain case of a triangulation on a
given surface. If the second type of triangulation will be chosen (see Figure 5
image on the right), the weighted volume value will be higher.

AN

Fig. 3. Example of correct tetrahedralization according to the face variance.

Another useful property of triangulations in arbitrary dimensions is that
(n — 1)-simplices not lying at the boundary of the convex hull are exactly
shared with two n-simplices. In other words, in 2D triangulations each interior
edge is shared exactly by two triangles, in 3D each interior triangular face is
shared exactly with two tetrahedrons, etc. This allows us to generalize most of
the known cost functions from the 2D case for the (n — 1)-simplices. Each n-
simplex contains (n+1) of (n—1)-simplices, for which the generalized feature-
preserving cost can be evaluated. Averaging of these values gives a feature
fitting weight function for our technique. We illustrate this on a concrete
cost function generalization into arbitrary dimensions. We have chosen a cost
function from the 2D case with the most convincing result, i.e. Sederberg's
cost function [YBSO01]. In Figure 4 the cost function dependency for data-
dependent triangulation is shown over a planar domain. 77 and T are triangles
at the generated piecewise linear surface, they share a common edge, denoted
as e. Sederberg's cost function is based on the angle a between the gradients
of the planes containing triangles 77,75, weighted by the magnitude of the
gradients:

cost(e) = [| 7 Prll - [| 7 Pol| - (1 = cos(e)) = [| v Al - [| V7 Pol| = VP - O P2,

VP, VP, are the gradients of the planes containing T, T, and || P]|, || P2]]
are their magnitudes. Angle « is the angle between these gradients.
Its straightforward generalization into higher dimension looks as follows:

cost(on—1) = |V Al - [| V Pol| = VP - VP2,

where linear polynomials Pj(x) and P(x) represent the hyperplanes. These
hyperplanes are formulated from the n—dimensional domain and the function
values of the data function:
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Fig. 4. Illustration of geometric dependencies in 2D data dependent triangulation.

Pz(ili) = ;101 + @;2T2 + ... + Q; nTpy + aim_i_l,i = {1, 2}

v P; is the gradient on the hyperplane, and || 57 B;|| is the magnitude of the
gradient:

VP = (ai1,ai2,..,0i0),1={1,2},
19 Pl = yJa?, + oy ad i = {1.2),

With the help of these generalized cost functions we can describe a feature-
preserving mesh, as follows:

Zo_ " cost(oy)
wlor) = =y

where oy, is an n-simplex and w(oy) is its weight function. The generalized
cost functions of the (n — 1)-dimensional subsets (faces) of this simplex are
averaged. The (n — 1)-simplices are marked in the sum as ;.

Other geometrical properties can also be involved in the weight function
design. On the base of the shape of (n — 1)-simplices we can consider their
weighted sum instead of the unweighted sum. Having feature fitting weight
functions the task is to solve the construction of an optimized mesh. This
problem is treated in the next section.

4 Content Based Data-Dependent Reconstruction

As we mentioned earlier, the feature preserving property of the reconstruction
technique is achieved by specific quality-improving operations on the topology
of the triangulation. In 2D this kind of topology transformation is called edge
flip and it changes the topology as follows: In Figure 4 the edge e can be
replaced with the edge V) — V3 if the four vertices form a strictly convex
quadrilateral. Via flip improvements the cost of the triangulation is decreased
iteratively, and we are getting a feature-preserving mesh. The 2D triangulation
algorithm based on this idea is called Lawson‘s optimization process [Law77].

In higher dimensions the notion of an edge flip generalizes to bistellar flips.
Bistellar flips contain vertex removing and inserting into triangulations. We
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are interested only in such transformations where the number of vertices does
not change. This general topological operation is based on Radon‘s theorem
from convex geometry [ES92]. Each transformation can be interpreted as a
projection of simplex into a lower dimension. The views of the simplex from
antipodal points of view in the direction of the projection introduces the two
configurations, before and after the flip. For example if we project a tetrahe-
dron into a plane we get an edge flip. Projections which cause degeneracies in
the projected complex can be interpreted as bistellar flips of lower dimension
in the simplex (of lower dimension) where the degeneracy occurred.
Let us describe the set of bistellar flips in 3D:

e A face can be changed into an edge as is illustrated in Figure 5,
top part. This is called a 2-3 flip.

e An edge can be changed to a face as is illustrated in Figure 5, top
part. This is called a 3-2 flip.

e A degenerate case occurs when six vertices form four adjacent
tetrahedrons with one common edge as is illustrated in Figure 5,
bottom part. If four of these vertices are coplanar and the remain-
ing vertices are divided by this plane, there are two possible ways
how to tetrahedralize this structure. This operation is called 4-4
flip.

In higher dimensions the situation is the following;:

e Let us consider an n-dimensional space, and a simplicial complex
M of n-simplices which share a common edge. If M has n + 2
vertices and forms a convex space then there exist exactly two
triangulations of M. One that includes the common edge and one
that instead includes a hyperface formed by the vertices not related
to the removed edge.

e All other possibilities are degeneracies and can be described as
bistellar flips of lower dimension.

Unlike in the 2D case it is not proven that with these bistellar flips one
can get from an arbitrary triangulation to any other possible configuration.
It is proven up to our knowledge only in the 3D case for points in convex
position [Bes01].

Another possibility for mesh improving is to investigate more complex
topological transformations, like the edge-removal operation in the 3D case.
It is a transformation that removes a single edge from the mesh along with all
tetrahedra that contain it. This operation can be composed from a series of
bistellar flips, but in that way the optimalization can get stuck in local optima.
Effective implementation was discussed in the work of Shewchuk [She02].

To make our concept more general we define the set 7x of topological
transformations of triangulation IC. The members of this set can be selected
arbitrarily. Reconstruction will be done considering the members of this set.
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Good reconstruction results can be expected from such a set of 7k, that gen-
erates all possible topological transformations at the given dimension. We are
interested in those topological operations which remove a specific k-simplex
k=1,...,n—1 and change the topology of n-simplices containing the removed

:’

'(,ﬁ ‘V ‘V ’VA V
Fig. 5. Illustration of the 3 — 2 - flip and 2 — 3 - flip topological transformations
(top image) and the 4 — 4 - flip topological transformation (bottom image).

Let us have a triangulation /C for the n—dimensional domain. The k—simplex
k=1,...,(n—1) is locally optimal with regard to 7x and to a given cost
function if:

e the k—simplex cannot be removed from the triangulation by ap-
plying one of the topological transformations from 7x

e there is a topological transformation in 7x that removes the
k—simplex (let us denote this k—simplex as flippable), but the
triangulation cost doesn’t decrease after the applied changes.

Triangulation K is locally optimal if topological transformations from 7x can-
not improve its weighted content.

We are introducing the generalization of Lawson‘s algorithm which cre-
ates locally optimal data-dependent triangulation. The pseudocode of the al-
gorithm is presented on Figure 6. At first an initial triangulation is generated,
as it is written in line2. We suggest for this role the Delaunay triangulation.
The initial triangulation should connect each vertex with its closest neigh-
bors. Due to the duality with Voronoi diagrams, the Delaunay triangulation
satisfies this criterion. Creation of good initial triangulations speeds up the
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running time, as the algorithm needs less iterations to converge to a locally op-
timal solution. For image and medical volume data reconstruction this means
the following: The optimization process at low-frequency areas will leave the
initial triangulation unchanged, only at high frequency areas it will generate
long feature-preserving simplices.

After creating the initial triangulation its weighted content is evaluated
- line3. The oldCost variable is used to store the triangulation cost of the
previous iteration step. Two lists are initialized in line5 and line6. List,ctive
contains all the simplices whose local optimality is tested in the given itera-
tion step. In the beginning this list contains all 1,...,n — 1 simplices of the
triangulation K. The second list Listcqndidate is the container of simplices
whose local optimality could change due to the applied transformations from
Tic. We denote these simplices with 0. At the beginning of the optimization
process Listcandidate 1S set to empty. In a given iteration local optimality of
the members of List,.tive are tested. If there exists a cost reducing topologi-
cal transformation from 7x then it is applied. The tested simplex is removed
from Listgctive. Into Listeqndidate those simplices are added whose local opti-
mality could change. At the end of each iteration step Listqctive is empty and
Listcandidate contains all the simplices that will be tested in the next iteration
step. The algorithm stops, if the triangulation cost was not improved in the
last iteration step. This procedure results in a locally optimal triangulation
KC with regard to a set of topological transformations 7x and a given cost
function.

It is evident that the described algorithm stops after a final number of
iteration steps. In each step we decrease the overall cost of the triangulation
and the number of possible triangulations is finite. The described idea of a
weighted content based DDT can be used with other optimization techniques
also. It is possible to construct a simulated annealing, look-ahead, or genetic
optimization approach based on this idea.

5 Experiments and Results

DDT triangulations can be computed by stochastic processes. Such a tech-
nique is the simulated annealing optimization approach. Its usage can im-
prove the approximation level of the algorithm to receive results which are
closer to the global optimum than the described generalized Lawson‘s opti-
mization process. However our experiences using simulated annealing does
not create visually pleasant results. The initial stages of simulated anneal-
ing apply topological transformations on the mesh which increase the cost of
the triangulation. This results in long, bad shaped simplices in areas without
high-frequency features. Our goal was to create these bad shaped simplices
only at high frequency areas. In Figure 7 a comparison between Lawson‘s
optimization process and the simulated annealing technique is depicted, both
using Sederberg’s cost function. The reconstruction is displayed at 600% mag-
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Generalized Lawson‘s optimization process
Input: scattered data
Output: locally optimal triangulation

1 begin

2 create the initial triangulation C;

3 Cost = cost(K);

4 oldCost = Cost + 1;

5 Listactive = {Vor €e K,k=1,...,n—1};
6 LiStcandidate = @;

7 while (Cost < oldCost)

8

9 for (Listactive members)

10 {

11 if (not locally optimal)

12 {

13 apply transformation from 7Zx;

14 remove from Listgctive;

15 for (o1 whose local optimality could be changed)
16

17 if (ok is not member of Listactive and Listcandidate)
18 add oy to Listcandidate;

19 }

20 }

21 else

22 remove o from Listactive;

23 }

24 oldCost = Cost;
25 Cost = cost(K);

26 Listactive = Listcandidate;
27 Listcandidate = (D;
28}

29  locally optimal IC created;
30 end

Fig. 6. The pseudocode of the n-dimensional DDT algorithm.

nification, the mesh of the resulting triangulation and the reconstructed 2.5D
terrain are also included. In low frequency areas (e.g., cheek area below the
eye) simulated annealing creates long and tiny triangles. Their generation is in
this case undesired. From the mathematical point of view this observation for
image and medical volume data reconstruction can be formulated as follows:
Qualitative reconstruction should give a good approximation of the minimum
weight triangulation, but should not change the topology in low-frequency
regions.

In Section 3 two types of weight functions have been described, the
variance-based approach and an approach based on the generalization of ex-
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Fig. 7. Results from Lawson‘s optimization process (upper row), and from sim-
ulated annealing (lower row) at 600% magnification. The last column shows the
triangulation of the height field.

isting cost functions into higher dimensions. We should notice that there is
a difference between these techniques. The variance based weight function is
clearly a C° continuous approach and depends only on the data values from
the tested n-simplex vertices. The weight function based on generalized cost
functions has different properties. It depends on the data values from the
tested n-simplex vertices and on the vertices of n-simplices which share with
the tested one a common (n — 1)-simplex. For this reason these weight func-
tions can be classified as near C'* continuous weight functions. Because of this
difference the running time of variance-based cost function DDT is lower than
the running time of the DDT with generalized cost functions. The reason is
that the weight function evaluation is computationally less complex, and the
number of simplices whose local optimality could change is smaller.

We plan to include examples from 3D and 4D domain in the final version.

6 Conclusions and Future Work

We have introduced a new method using topological changes for n-dimensional
data-dependent triangulation. This enables a better visualization of the local
topology of sharp features both for with regular and sparse grids in arbitrary
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dimension. Topology of the reconstruction grid is driven by the topology of
the underlying data.

The potential of this new reconstruction technique results in many future
work directions:

Our feature preserving triangulation can be used for data compression.
If we assign a cost to vertices we have information about how important the
vertices are. With mesh decimation techniques the non important vertices can
be removed.

A straightforward use of the described technique for the reconstruction of
time-varying volume data is possible. The reconstruction errors from known
image processing methods are more disturbing than in static reconstruction.

Optimal triangulations in 2D are relatively well explored. Higher dimen-
sional optimal triangulations is novel area for investigation. We hope that
our contribution improves the theory in this research area and its application
provides a new tool for practical scattered data reconstruction.

7 Acknowledgments

Funds for the support of this research have been allocated by the Rectorate of
the Comenius University and the Ausseninstitut der Technischen Universitét
Wien. Part of the work presented in this publication is carried out within
the exvisation project (www.cg.tuwien.ac.at/research/vis/exvisation) supported
by the Austrian Science Fund (FWF) grant no. P18322.

References

[BE95] BERN M., EPPSTEIN D.: Mesh generation and optimal triangulation. In
Computing in Euclidean Geometry, second ed., no. 4. World Scientific,
1995, pp. 47-123.

[BesO1] BESPAMYATNIKH S. N.: Enumerating triangulations of convex polytopes.
In Proc. Conf. Discrete Models: Combinatorics, Computation, €& Geome-
try (DM-CCG 2001) (2001), Cori R., Mazoyer J., Morvan M.,, Mosseri R.,
(Eds.), no. AA in Discrete Mathematics & Theoretical Computer Science
Proceedings, pp. 111-122.

[BGMO04] BATTIATO L., GALLO G., MESSINA G.: Svg rendering of real images using
data dependent triangulation. In In Proceedings of Spring Conference on
Computer Graphics 2004 (2004), pp. 191-198.

[Bro91l] BROWN J.: Vertex based data dependent triangulations. Computer Aided
Geometric Design 8, 3 (1991), 239-251.

[DLR90] DyN N., LEVIN D., RippA S.: Data dependent triangulations for piecewise
linear interpolation. IMA Journal of Numerical Analysis, 10 (1990), 137—
154.

[ES92] EDELSBRUNNER H., SHAH N. R.: Incremental topological flipping works
for regular triangulations. In SCG ’92: Proceedings of the eighth annual
symposium on Computational geometry (1992), ACM Press, pp. 43-52.



Title Suppressed Due to Excessive Length 15

[FNP96] FERKO A., NIEPEL L., PLACHETKA T.: Criticism of hunting minimum

[Joe91]

[KHO1]

[Kol99)

[Law77]

[Lee00]

weight triangulation edges. In Proceedings of the 12th Spring Conference
on Computer Graphics (1996), pp. 259-264.

JOE B.: Construction of three-dimensional delaunay triangulations using
local transformations. Comput. Aided Geom. Des. 8, 2 (1991), 123-142.
KREYLOS O., HAMANN B.: On simulated annealing and the construction
of linear spline approximations for scattered data. IEEE Transactions on
Visualization and Computer Graphics 7, 1 (2001), 17-31.

KOLINGEROVA I.: Genetic approach to data dependent triangulations. In
In Proceddings of Spring Conference on Computer Graphics 1999 (1999),
pp. 229-238.

LawsoN C.: Software for ¢® interpolation. Mathematical Software III.
(1977), 161-194.

LEE K.: Three-dimensional medical image modeling of scattered data
based on data-dependent criteria. In Proc. SPIE Vol. 4117, Vision Geom-
etry IX (2000), pp. 91-99.

[MDMO04] MARCHESIN S., DISCHLER J. M., MONGENET C.: 3d roam for scalable

[Nie93]

[RNOO]

[Sch93]

[She02]
[SWO04]
[Tot04]

[YBSO1]

volume visualization. In 2004 IEEE Symposium on Volume Visualization
and Graphics (VV’04) (2004), IEEE Computer Society, pp. 79-86.
NIELSON G. M.: Scattered data modeling. IEEE Comput. Graph. Appl.
13,1 (1993), 60-70.

ROXBOROUGH T., NIELSON G. M.: Tetrahedron based, least squares, pro-
gressive volume models with application to freehand ultrasound data. In
VISUALIZATION °00: Proceedings of the 11th IEEE Visualization 2000
Conference (VIS 2000) (2000), IEEE Computer Society.

SCHUMAKER L. L.: Computing optimal triangulations using simulated
annealing. In Selected papers of the international symposium on Free-
form curves and free-form surfaces (1993), Elsevier Science Publishers B.
V., pp. 329-345.

SHEWCHUK J. R.: Two discrete optimization algorithms for the topolog-
ical improvement of tetrahedral meshes. Unpublished manuscript, 2002.
Su D., WiLLis P.: Image interpolation by pixel-level data-dependent
triangulation. Comput. Graph. Forum 23, 2 (2004), 189-202.

ToTH Z.: Towards an optimal texture reconstruction. In Proceedings of
the Central European Seminar on Computer Graphics '04 (2004).

Yu X., BRYAN B. S., SEDERBERG T. W.: Image reconstruction using
data-dependent triangulation. Computer Graphics and Applications 21, 3
(2001), 62-68.



