Visualization - lecture unit \#2

on data, grids, ...
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Retrospection: lecture unit \#1

- Visualization lab: organizational details
\square Content of 1. lecture unit \qquad
- Visualization - Definition
- Application examples \qquad
- Visualization for: exploration, analysis, presentation
\qquad
- Scientific Visualization vs. Information Visualization
\qquad
- Visualization pipeline \qquad

Eduard Gröller, Helwig Hauser
1 \qquad

Overview: lecture unit \#2

- Content of 2. lecture unit:
- Visualization scenarios \qquad
- On Data
- Visualization examples \qquad
- On grids
- Visualization and color \qquad
\qquad
\qquad

Eduard Gröller, Helwig Hauser \qquad

Visualization Scenarios

How closely is visualization connected to the data generation?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Data, Visualization, Interaction

- Coupling varies considerably:
- Data generation (data acquisition): \qquad
- Measuring, Simulation, Modelling
- Can take very long (measuring, simulation)
- Can be very costly (simulation, modelling)
- Visualization (rest of visualization pipeline):
- Data enhancement, vis. mapping, rendering
- Depending on computer, implementation: fast or slow
- Interaction (user feedback):
- How can the user intervene, vary parameters \qquad

Passive Visualization (min.)	IU
- All three steps separated:	
- Data generation	
- Measurements	
- Simulation	
- Modelling	
- Off-line Visualization:	
- Previously generated data are visualized	
- Passive Visualization:	
- Viewing of the visualization results	
Eduard Crioler, Hemig Hauser	共

| Interactive Visualization (med.) |
| :--- | :--- |
| Only data generation is separated: |
| Off-line data generation: |
| \square Measurments, Simulation, Modelling |
| Interactive Visualization: |
| \square Previously generated data are available |
| \square Visualization program allows interactive |
| visualization of the data |

Interactive Steering (max.)
- All three steps coupled:
Interactive Steering:
- Simulation and/or modelling (measuring)
generate data "on the fly"
Interactive visualization allows "real-time"
insight into the data
Extended possibilities:
user can interfere with the simulation and/or
the modelling, change the design, aso.
■ Often requires lots of efforts, very costly

On Data	
Data characteristics,	
Data attributes,	
Data spaces	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Data - General Information

- Data:

- Focus of visualization, \qquad everything is centered around the data
- Driving factor (besides user) in choice and \qquad attribution of the visualization technique
- Important questions: \qquad
- Where do the data "live" (data space)
- Type of the data \qquad
- Which representation makes sense (secondary aspect) \qquad

Eduard Gröller, Helwig Hauser
10

Data Space

- Where do the data "live"?
- inherent spatial domain (SciVis):
- 2D/3D data space given
- Examples: medical data, flow simulation data,

GIS-data, etc.

- no inherent spatial reference (InfoVis):
- Abstract data, spatial embedding through visualization
- Example: data bases
\qquad

Aspects: dimensionality (data space), coordinates, region of influence (local, global), domain
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- What type of data?
- Data types:

■ Scalar = numerical value (natural, whole, rational, real, complex numbers) \qquad

- Non numerical (nominal, ordinal values)
- Multidimensional values (n -dim. vectors, \qquad $\mathrm{n} \times \mathrm{n}$-dim. tensors of data from same type)
- multimodal values (vectors of data with varying type [e.g., row in a table])
- Aspects: dimensionality, co-domain (range)
\qquad

Data Representation

- How can data be represented?
\bullet inherent spatial domain? \qquad
- Yes \Rightarrow Recycle data space? Or not?
\square No \Rightarrow Select which representation space? \qquad
- Which dimension is used what for?
- Relationship data space \Leftrightarrow data \qquad characteristics
- Available display space (2D/3D) \qquad
- Where is the focus?
- Where can you abstract / save (e.g., too many dimensions)
Eduard Gröller, Helwig Hauser 13
\qquad
\qquad

Visualization Examples		
data	description	visualization example

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Visualization Examples	description	visualization example
$\mathrm{R}^{2} \rightarrow \mathrm{R}^{1}$	function over R^{2}	2D-height map in 3D, contour lines in 2D, false color map
IU		

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

On Grids

On the organisation of sampled data
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Important questions:
-Which data organisation is optimal? \qquad
Where do the data come from?
- Is there a neighborhood relationship? \qquad
- How is the neighborhood info. stored?
- How is navigation within the data possible?
- Calculations with the data possible ?
\qquad
- Are the data structured?

Eduard Gröller, Helwig Hauser
24

Cartesian Grid

- Characteristics:
- Orthogonal, equidistant grid
Uniform distances (in all dims., $\mathrm{dx}=\mathrm{dy}$)
- Implicit neighborhoodrelationship (cf. array of arrays)
dy

dx
\qquad
\qquad
\qquad
\qquad

Eduard Gröller, Helwig Hauser \qquad

Regular Grid

- Characteristics:
- Orthogonal, equidistant grid
- Sample-distances not equal ($d x \neq d y$)
- Implicit neighborhood-

```

``` relationship
\(\qquad\)
- Characteristics:
- Orthogonal grid
- varying sampledistances (\(x[i], y[j]\) given)
- Implicit neighborhood-
 relationship
\(\qquad\)

Eduard Gröller, Helwig Hauser
27 \(\qquad\)

70

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Block-Structured Grid}
- Characteristics:
- Combination of structured grids \(\qquad\)
- Each block specified separately
- Implicit neighborhood-relationship \(\qquad\)
- Interface between blocks has to be considered \(\qquad\)

Eduard Gröller, Helwig Hauser 29
\(\qquad\)

\section*{Hybrid Grid} 7
- Characteristics:
- Combination of structured and unstructured grids
- Sub-grids specified separately
- Interface between sub-grids has to be considered

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

Eduard Gröller, Helwig Hauser \(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Scattered Data}
- Characteristics:
-Grid-free data
- Data points given without
 neighborhood-relationship
\(\qquad\)
\(\qquad\) Influence on neighborhood defined by spatial proximity
- Scattered data interpolation
- \(\qquad\)

\section*{Grid Transformations}
- Conversion between grids:
physical domain (simulation)
- computational domain (visualization mapping)
- image domain (rendering) \(\qquad\)
- etc.
- Questions:
\(\qquad\)
- Accuracy of re-sampling!
- Design of algorithms
\(\qquad\)
\(\qquad\)

Eduard Gröller, Helwig Hauser \(\qquad\)

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Visualization and Color}

Guidelines for the Usage of Color in Visualization
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{Usage of Color}
- Some facts:
- Color can emphasize information \(\qquad\)
- Number of colors only \(7 \pm 2\)
- Appr. 50-300 shades distinguishable \(\qquad\) (different for different colors)
- Rainbow color scale \(=\) linear! \(\qquad\)
- Color perception strongly depends on context
- Color blind users are handicapped
\(\qquad\)
- Observe color associations \(\qquad\)

Eduard Gröller, Helwig Hauser 38 \(\qquad\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Color Associations} & \\
\hline & sensation & taste & temp. & weight \\
\hline blue & bright: soft dark: hard & neutral & cool, cold & bright: light, dark: heavy \\
\hline red & rough & spicy, crispy & warm, hot & (as blue) \\
\hline green & - & bitter & cool & (as blue) \\
\hline yellow & soft & sweet & warm, hot & light \\
\hline \begin{tabular}{l}
pink \\
Eduard Grölle
\end{tabular} & very soft Helwig Hauser & sweetish & skintemp. & light \\
\hline
\end{tabular}

\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

```

Guidelines for Usage of Color
Desaturated lines as border of colored areas
No saturated blue for details, animations

- do not mix saturated blue and red
(why? therefore )
- Avoid high color frequencies
- Colors to compare should be close
- Observe context, associations!
- Well suited: color for qualitative visualization
- Use redundancy (shape, style, etc.)
Eduard Gröller, Helwig Hauser 42
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## Acknowledgement

- Thanks for material for this lecture unit:
- Inge Tastl $\qquad$
- etc.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

