Visualization, Lecture #2d

Flow visualization, Part 3 (of 3)

Flow Visualization with Integral Objects

Streamribbons, Streamsurfaces, etc.

Overview: Lecture #2d

- Flow Visualization, Part 3:
 - flow visualization with integral objects
 streamribbons,
 - streamsurfaces, stream arrows
 - line integral convolution
 - algorithm
 - examples, alternatives
 - glyphs & icons, flow topology
 - summary

Streamribbon Generation

- Start with a 3D point x_{i=0} and a 2nd one y_{i=0} in a particular dist. d, i.e. (x_i-y_i)²= d²
- Loop:

Œ

- Do an integration step from \mathbf{x}_i to yield \mathbf{x}_{i+1}
- Do an integration step from \mathbf{y}_i to yield \mathbf{z} renormalize the dist. between $\mathbf{x}_{i+1} \otimes \mathbf{z}$ to d, i.e. $\mathbf{y}_{i+1} = \mathbf{x}_{i+1} + d \cdot (\mathbf{z} \cdot \mathbf{x}_{i+1}) / |\mathbf{z} \cdot \mathbf{x}_{i+1}|$

End streamribbon integration if wanted

Helwig Hauser, Eduard Gröller

Relation to Seed	Objects		()
IntegralObj.	Dim.	SeedObj.	Dim.
Streamline, Streamribbon Streamtube	1D 1D++ 1D++	Point Point+pt. Pt.+cont.	0D 0D+0D 0D+1D
Streamsurface	2D	Curve	1D
Flow volume	3D	Patch	2D
Helwig Hauser	11		

LIC – Introduction

Aspects:

- goal: general overview of flow
- Approach: usage of textures
- Idea: flow ⇔ visual correlation
- Example:

6

LIC in 3D??!

- Correlation also possible in 3D:
 - problem of rendering: DVR of 3D LIC ⇒ Destruction of correlational information!

Hence: selective use

Literature	
 Papers (more details): B. Cabral & L. Leedom: "Imaging Vector Field Using Line Integral Convolution" in Proceedings of SIGGRAPH '93 = Computer Graphics 27, 1993, pp. 263-270 D. Stalling & HC. Hege: "Fast and Resolutio Independent Line Integral Convolution" in Proceedings of SIGGRAPH '95 = Computer Graphics 29, 1995, pp. 249-256 	ds m
Helwig Hauser 23	

Flow Visualization dependent on local props.

Visualization of $\nabla \boldsymbol{v}$

Timesurfaces

- start surface, e.g. part of a plane
- move whole surface along flow over time
- time surface: surface at one point in time

 (\mathbf{I})

Important Questions

- Dimensionality? 2D, Surface, 3D?
- User-Goal? overview, details?
- Examples:
 - 2D/surfaces+overview ⇒ LIC (or...), evenlyplaced streamlines, hedgehog plots

6

- 3D+exemplary ⇒ selected streamlines, streamsurfaces, etc., 3D arrows on slices
- unsteady/2D+overview ⇒ animated texture advection, etc.
- \blacksquare unsteady/3D+idea \Rightarrow animated particles

Acknowledgements

- For material used in this lecture:
 - Hans-Georg Pagendarm, Bruno Jobard

- Jeff Hultquist
- Lukas Mroz, Rainer Wegenkittl
- Nelson Max, Will Schroeder et al.
- Brian Cabral & Leith Leedom
- David Kenwright
- Rüdiger Westermann
- Jack van Wijk, Freik Reinders, Frits Post, Alexandru Telea, Ari Sadarjoen

alwig Hauser 42