
Visualization, Lecture #2d Flow visualization, Part 3 (of 3)

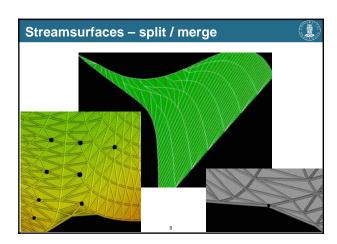
Retrospect: Lecture #2c Flow Visualization, Part 2: FlowVis with arrows numerical integration Euler-integration Runge-Kutta-integration streamlines in 2D particle paths in 3D, sweeps illuminated streamlines streamline placement

Overview: Lecture #2d Flow Visualization, Part 3: flow visualization with integral objects streamribbons, streamsurfaces, stream arrows line integral convolution algorithm examples, alternatives glyphs & icons, flow topology summary

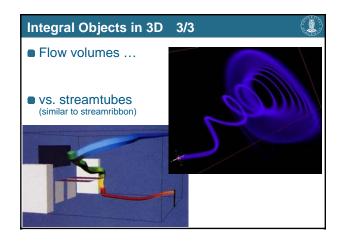
Flow Visualization with Integral Objects

Streamribbons, Streamsurfaces, etc

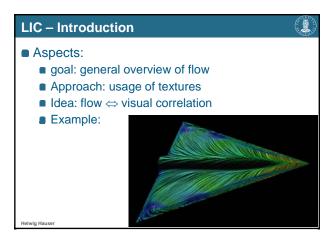


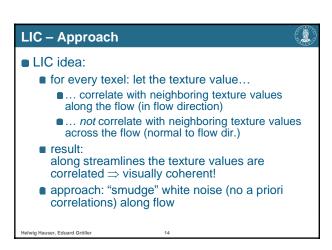

Streamribbon Generation

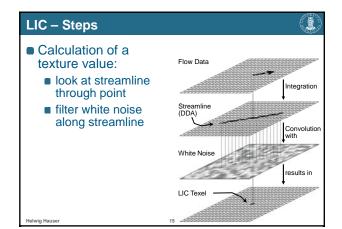



- Start with a 3D point $\mathbf{x}_{i=0}$ and a 2^{nd} one $\mathbf{y}_{i=0}$ in a particular dist. d, i.e. $(\mathbf{x}_i \mathbf{y}_i)^2 = d^2$
- Loop:
- Do an integration step from \mathbf{x}_i to yield \mathbf{x}_{i+1}
- Do an integration step from \mathbf{y}_i to yield \mathbf{z} renormalize the dist. between \mathbf{x}_{i+1} & \mathbf{z} to d, i.e. $\mathbf{y}_{i+1} = \mathbf{x}_{i+1} + d \cdot (\mathbf{z} \mathbf{x}_{i+1}) / |\mathbf{z} \mathbf{x}_{i+1}|$
- End streamribbon integration if wanted

Helwig Hauser, Eduard Gröller

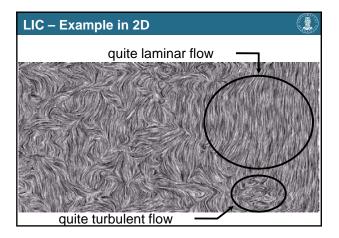


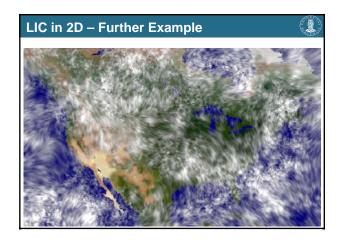


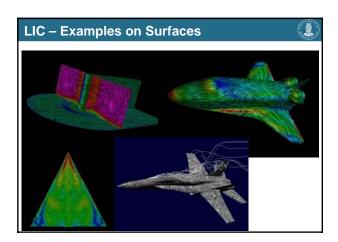

Relation to Seed Objects			
■ IntegralObj.	Dim.	SeedObj.	Dim.
Streamline, Streamribbon Streamtube	1D 1D++ 1D++	Point Point+pt. Pt.+cont.	0D 0D+0D 0D+1D
Streamsurface	2D	Curve	1D
Flow volume	3D	Patch	2D
Helwig Hauser	11		

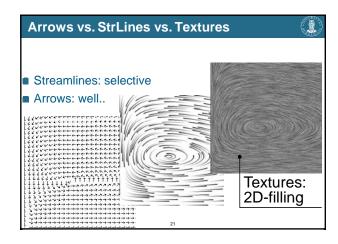
Line Integral Convolution

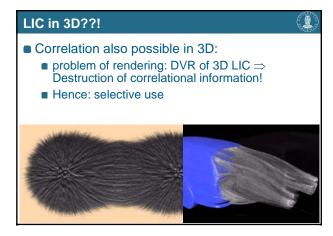
Flow Visualization in 2D or on surfaces








Calculation of LIC texture: input 1: flow data v(x): Rⁿ→Rⁿ, analytically or interpolated input 2: white noise n(x): Rⁿ→R¹, normally precomputed as texture streamline s_x(u) through x: R¹→Rⁿ, s_x(u) = x + sgn(u)·∫_{0≤t∈|u|} v(s_x(sgn(u)·t)) dt input 3: filter h(t): R¹→R¹, e.g., Gauss result: texture value lic(x): Rⁿ→R¹, lic(x) = lic(s_x(0)) = ∫ n(s_x(u))·h(-u) du


More Explanation So: LIC − lic(x) − is a convolution of white noise n (or ...) and a smoothing filter h (e.g. a Gaussian) The noise texture values are picked up along streamlines s_x through x

Literature

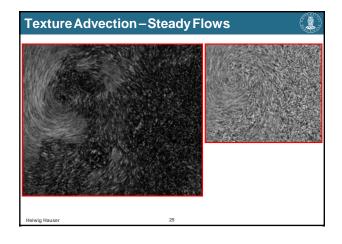
- Papers (more details):
 - B. Cabral & L. Leedom: "Imaging Vector Fields Using Line Integral Convolution" in Proceedings of SIGGRAPH '93 = Computer Graphics 27, 1993, pp. 263-270
 - D. Stalling & H.-C. Hege: "Fast and Resolution Independent Line Integral Convolution" in Proceedings of SIGGRAPH '95 = Computer Graphics 29, 1995, pp. 249-256

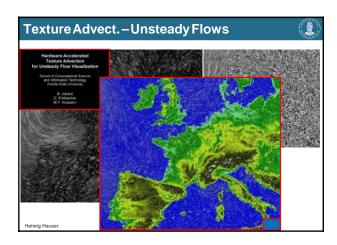
Helwig Hause

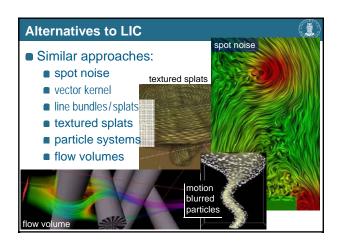
2

LIC-Variants

- OLIC = Oriented Line Integral Convolution
 - visualization of directional information

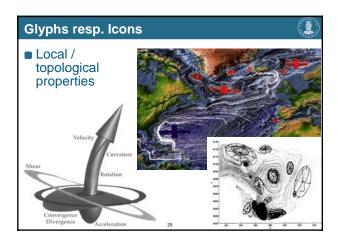


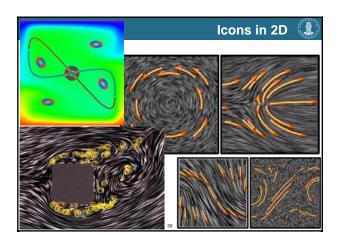


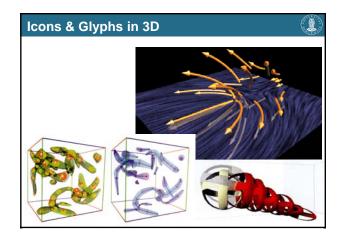


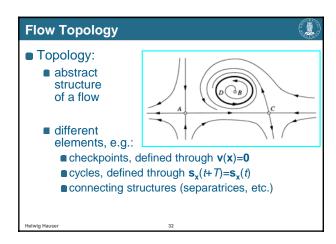
Helwig Hause

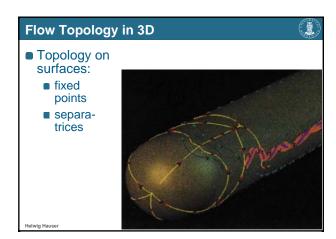
.

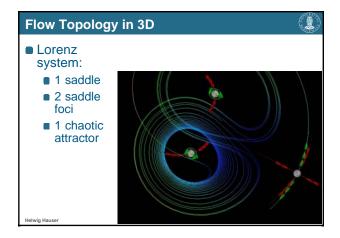


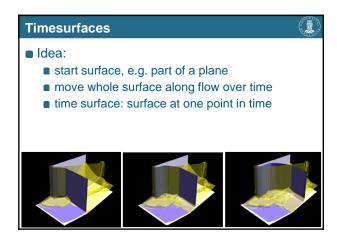





Flow Visualization dependent on local props.

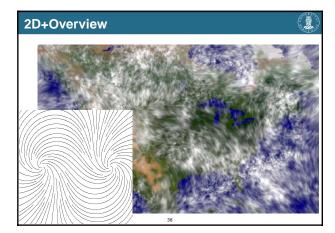

Visualization of $\nabla \mathbf{v}$

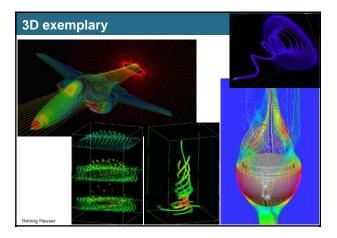


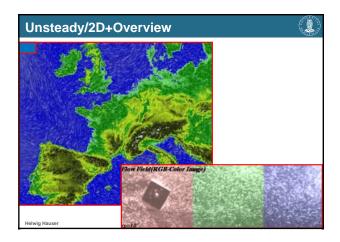


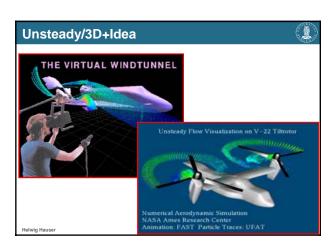
Flow Visualization – summary

Overview, Solutions


Important Questions




- Dimensionality? 2D, Surface, 3D?
- User-Goal? overview, details?
- Examples:
 - 2D/surfaces+overview ⇒ LIC (or...), evenly-placed streamlines, hedgehog plots
 - 3D+exemplary ⇒ selected streamlines, streamsurfaces, etc., 3D arrows on slices
 - unsteady/2D+overview ⇒ animated texture advection, etc.
 - unsteady/3D+idea ⇒ animated particles


Helwig Hauser

37

Acknowledgements For material used in this lecture: Hans-Georg Pagendarm, Bruno Jobard Jeff Hultquist Lukas Mroz, Rainer Wegenkittl Nelson Max, Will Schroeder et al. Brian Cabral & Leith Leedom David Kenwright Rüdiger Westermann Jack van Wijk, Freik Reinders, Frits Post, Alexandru Telea, Ari Sadarjoen