
Flow Visualization

Part 2 (of 3)

Retrospect: Flow Visualization, Part 1

introduction, overview
simulation vs. measurement vs. modelling
2D vs. surfaces vs. 3D
steady vs time-dependent
direct vs. indirect FlowVis
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experimental FlowVis
general possibilities
PIV + example

visualization of models

flow visualization with arrows

Overview: Flow Visualization, Part 2

numerical integration
Euler-integration
Runge-Kutta-integration

streamlines
in 2D
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particle paths
in 3D, sweeps
illuminated streamlines

streamline placement



Integration of Streamlines

Numerical Integration

Streamlines – Theory

Correlations:
flow data v: derivative information
dx/dt = v(x); 
spatial points xRn, time tR,    flow vectors vRn

streamline s: integration over time,
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g ,
also called trajectory, solution, curve
s(t) = s0 + 0ut v(s(u)) du;
seed point s0, integration variable u
difficulty: result s also in the integral  analytical 
solution usually impossible!

Streamlines – Practice

Basic approach:
theory: s(t) = s0 + 0ut v(s(u)) du
practice: numerical integration
idea: 
(very) locally, the solution is (approx.) linear
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( y) y, ( pp )

Euler integration: 
follow the current flow vector v(si) from the current 
streamline point si for a very small time (dt) and 
therefore distance
Euler integration: si+1 = si + dt ·v(si),
integration of small steps (dt very small)



Euler Integration – Example

2D model data: vx = dx/dt = y
vy = dy/dt = x/2

Sample arrows:

2
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True
solution:
ellipses!
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Euler Integration – Example

Seed point s0 = (0 | -1 )T;
current flow vector v(s0) = (1 |0)T;
dt = 1/2
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Euler Integration – Example

New point s1 = s0 + v(s0) ·dt = (1/2 | -1)T;
current flow vector v(s1) = (1 |1/4)T;
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Euler Integration – Example

New point s2 = s1 + v(s1) ·dt = (1 | -7/8)T;
current flow vector v(s2) = (7/8 |1/2 )T;

2
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Euler Integration – Example

s3 = (23/16 | -5/8 )T  (1.44 | -0.63)T;
v(s3) = (5/8 |23/32 )T  (0.63 |0.72)T;
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Euler Integration – Example

s4 = (7/4 | -17/64 )T  (1.75 | -0.27)T;
v(s4) = (17/64 |7/8 )T  (0.27 |0.88)T;
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Euler Integration – Example

s9  (0.20 |1.69)T;
v(s9)  ( -1.69 |0.10)T;
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Euler Integration – Example

s14  ( -3.22 | -0.10)T;
v(s14)  (0.10 | -1.61)T;

2

Helwig Hauser 14

0 1 2 3 4

0

1

Euler Integration – Example

s19  (0.75 | -3.02)T; v(s19)  (3.02 |0.37)T;
clearly: large integration error, dt too large!
19 steps
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Euler Integration – Example

dt smaller (1/4): more steps, more exact! 
s36  (0.04 | -1.74 )T; v(s36)  (1.74 |0.02)T;

36 steps

2
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Comparison Euler, Step Sizes

Euler 
is getting
better 
propor-
tionally 
to dt
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to dt

Euler Example – Error Table

dt #steps error

1/2 19 ~200%

1/4 36 ~75%

1/10 89 25%
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1/10 89 ~25%

1/100 889 ~2%

1/1000 8889 ~0.2% 



Better than Euler Integr.: RK

Runge-Kutta Approach:
theory: s(t) = s0 + 0ut v(s(u)) du
Euler: si = s0 + 0u<i v(su) dt
Runge-Kutta integration:

idea: cut short the curve arc
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idea: cut short the curve arc
RK-2 (second order RK):
1.: do half a Euler step
2.: evaluate flow vector there
3.: use it in the origin
RK-2 (two evaluations of v per step):
si+1 = si + v(si+v(si)·dt /2) ·dt

RK-2 Integration – One Step

2

Seed point s0 = (0 | -2 )T;
current flow vector v(s0) = (2 |0)T;
preview vector v(s0+v(s0)·dt /2) = (2|0.5)T; 
dt = 1
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RK-2 – One more step

Seed point s1 = (2 | -1.5 )T;
current flow vector v(s1) = (1.5 |1)T;
preview vector v(s1+v(s1)·dt /2)  (1|1.4)T; 
dt = 1
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RK-2 – A Quick Round

RK-2: even with dt=1 (9 steps) 
better 
than Euler 
with dt=1/8
(72 steps)
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RK-4 vs. Euler, RK-2

Even better: fourth order RK:
four vectors a, b, c, d
one step is a convex combination:
si+1 = si + (a +2·b +2·c +d)/6
vectors:
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a = dt·v(si) … original vector
b = dt·v(si+a/2) … RK-2 vector
c = dt·v(si+b/2) … use RK-2 …
d = dt·v(si+c) … and again!

Euler vs. Runge-Kutta

RK-4: pays off only with complex flows

Here 
approx.
like 
RK-2
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Integration, Conclusions

Summary:
analytic determination of streamlines 
usually not possible
hence: numerical integration
several methods available
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(Euler, Runge-Kutta, etc.)
Euler: simple, imprecise, esp. with small dt
RK: more accurate in higher orders
furthermore: adaptive methods, implicit methods, 
etc.

Flow Visualization
with Streamlines

Streamlines, 
Particle Paths, etc.

Streamlines in 2D

Adequate
for overview 
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Particle paths =
streamlines
(steady flows)

Variants (time-
dependent data):

Visualization with Particles

dependent data):
streak lines:
steadily new
particles
path lines:
long-term path
of one particle
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click2demo (F9!)

Streamlines in 3D

Color 
coding:
Speed

Selective
Placement
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3D Streamlines with Sweeps

Sweeps: 
better spatial 3D 
perception
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Illuminated Streamlines

Illuminated 
3D curves 
better 3D
perception!
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Streamline Placement

in 2D

Problem: Choice of Seed Points

Streamline placement:
If regular grid used: very irregular result

Helwig Hauser 33



Overview of Algorithm

Idea: streamlines should not get too near to 
each other

Approach:
choose a seed point with distance dsep from an 
already existing streamline
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y g
forward- and backward-integration until distance 
dtest is reached (or …).
two parameters:

dsep … start distance
dtest … minimum distance

Algorithm – Pseudocode

Compute initial streamline, put it into a queue

Initial streamline becomes current streamline
WHILE not finished DO:

TRY: get new seed point which is dsep away from
current streamline

IF f l THEN li
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IF successful THEN compute new streamline 
and put to queue

ELSE IF no more streamline in queue 
THEN exit loop
ELSE next streamline in queue becomes

current streamline

Streamline Termination

When to stop streamline integration:
when dist. to neighboring streamline ≤ dtest

when streamline leaves flow domain
when streamline runs into fixed point (v=0)
when streamline gets too near to itself
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when streamline gets too near to itself
after a certain amount of maximal steps



New Streamlines
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Different Streamline Densities

Variations of dsep in rel. to image width:

6% 3% 1.5%
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dsep vs. dtest

dtest = 0.9 · dsep dtest = 0.5 · dsep
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Tapering and Glyphs

Thickness in rel. 
to dist.
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Directional
glyphs:
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