### Flow Visualization Part 2 (of 3)

## Retrospect: Flow Visualization, Part 1 • introduction, overview • simulation vs. measurement vs. modelling • 2D vs. surfaces vs. 3D • steady vs time-dependent • direct vs. indirect FlowVis • experimental FlowVis • general possibilities • PIV + example • visualization of models

2

Helwig Hauser



### Integration of Streamlines

Numerical Integration

### Streamlines – Theory

### Correlations:

Helwig Hauser, Eduard Gröller

- flow data v: derivative information
- $\mathbf{d}\mathbf{x}/\mathbf{d}t = \mathbf{v}(\mathbf{x});$
- spatial points  $\mathbf{x} \in \mathbb{R}^n$ , time  $t \in \mathbb{R}$ , flow vectors  $\mathbf{v} \in \mathbb{R}^n$ streamline **s**: integration over time,
- also called trajectory, solution, curve
- $\mathbf{s}(t) = \mathbf{s}_0 + \int_{0 \le u \le t} \mathbf{v}(\mathbf{s}(u)) \, \mathrm{d}u$ ; seed point  $\mathbf{s}_0$ , integration variable u
- difficulty: result s also in the integral ⇒ analytical solution usually impossible!

### Streamlines – Practice

(1

### Basic approach:

- theory:  $\mathbf{s}(t) = \mathbf{s}_0 + \int_{0 \le u \le t} \mathbf{v}(\mathbf{s}(u)) du$
- practice: numerical integration
- idea:
  - (very) locally, the solution is (approx.) linear
- Euler integration: follow the current flow vector v(s<sub>i</sub>) from the current streamline point s<sub>i</sub> for a very small time (dt) and therefore distance
- Euler integration: s<sub>i+1</sub> = s<sub>i</sub> + dt · v(s<sub>i</sub>), integration of small steps (dt very small)













































| Euler Example – Error Table |            |        |       |              |  |
|-----------------------------|------------|--------|-------|--------------|--|
| •                           | d <i>t</i> | #steps | error |              |  |
| •                           | 1/2        | 19     | ~200% |              |  |
|                             | 1/4        | 36     | ~75%  |              |  |
|                             | 1/10       | 89     | ~25%  |              |  |
|                             | 1/100      | 889    | ~2%   |              |  |
|                             | 1/1000     | 8889   | ~0.2% | $\checkmark$ |  |
|                             |            |        |       |              |  |
|                             |            |        |       |              |  |
| Helwig Hauser               |            | 18     |       |              |  |























### Integration, Conclusions

- Summary:
  - analytic determination of streamlines usually not possible
  - hence: numerical integration
  - several methods available (Euler, Runge-Kutta, etc.)
  - Euler: simple, imprecise, esp. with small dt
  - RK: more accurate in higher orders
  - furthermore: adaptive methods, implicit methods, etc.

25

Flow Visualization with Streamlines

Streamlines, Particle Paths, etc.





















### **Overview of Algorithm**

- Idea: streamlines should not get too near to each other
- Approach:
  - choose a seed point with distance d<sub>sep</sub> from an already existing streamline
  - forward- and backward-integration until distance *d*<sub>test</sub> is reached (or ...).
  - two parameters:
    - *d<sub>sep</sub>* ... start distance
    - *d<sub>test</sub>* ... minimum distance

### Algorithm – Pseudocode

### **Streamline Termination**

lelwig Hauser

### 

- When to stop streamline integration:
  - when dist. to neighboring streamline  $\leq d_{\text{test}}$
  - when streamline leaves flow domain
  - when streamline runs into fixed point (v=0)
  - when streamline gets too near to itself
  - after a certain amount of maximal steps

















# Literature Paper (more details): B. Jobard & W. Lefer: "Creating Evenly-Spaced Streamlines of Arbitrary Density" in Proceedings of 8th Eurographics Workshop on Visualization in Scientific Computing, April 1997, pp. 45-55 Hetwig Hauser 4t

### Acknowledgements

- For material used in this lecture:
  - Bruno Jobard
  - Malte Zöckler
  - Georg Fischel
  - Frits Post
  - Roger Crawfis
  - myself... ;-) (i.e., Helwig Hauser)
  - etc.

lelwig Hauser, Eduard Gröller 42