
Flow Visualization

Part 2 (of 3)

Retrospect: Flow Visualization, Part 1

introduction, overview
simulation vs. measurement vs. modelling
2D vs. surfaces vs. 3D
steady vs time-dependent
direct vs. indirect FlowVis

Helwig Hauser 2

experimental FlowVis
general possibilities
PIV + example

visualization of models

flow visualization with arrows

Overview: Flow Visualization, Part 2

numerical integration
Euler-integration
Runge-Kutta-integration

streamlines
in 2D

Helwig Hauser 3

particle paths
in 3D, sweeps
illuminated streamlines

streamline placement

Integration of Streamlines

Numerical Integration

Streamlines – Theory

Correlations:
flow data v: derivative information
dx/dt = v(x);
spatial points xRn, time tR, flow vectors vRn

streamline s: integration over time,

Helwig Hauser, Eduard Gröller 5

g ,
also called trajectory, solution, curve
s(t) = s0 + 0ut v(s(u)) du;
seed point s0, integration variable u
difficulty: result s also in the integral analytical
solution usually impossible!

Streamlines – Practice

Basic approach:
theory: s(t) = s0 + 0ut v(s(u)) du
practice: numerical integration
idea:
(very) locally, the solution is (approx.) linear

Helwig Hauser 6

(y) y, (pp)

Euler integration:
follow the current flow vector v(si) from the current
streamline point si for a very small time (dt) and
therefore distance
Euler integration: si+1 = si + dt ·v(si),
integration of small steps (dt very small)

Euler Integration – Example

2D model data: vx = dx/dt = y
vy = dy/dt = x/2

Sample arrows:

2

Helwig Hauser 7

True
solution:
ellipses!

0 1 2 3 4

0

1

Euler Integration – Example

Seed point s0 = (0 | -1)T;
current flow vector v(s0) = (1 |0)T;
dt = 1/2

2

Helwig Hauser 8

0 1 2 3 4

0

1

Euler Integration – Example

New point s1 = s0 + v(s0) ·dt = (1/2 | -1)T;
current flow vector v(s1) = (1 |1/4)T;

2

Helwig Hauser 9

0 1 2 3 4

0

1

Euler Integration – Example

New point s2 = s1 + v(s1) ·dt = (1 | -7/8)T;
current flow vector v(s2) = (7/8 |1/2)T;

2

Helwig Hauser 10

0 1 2 3 4

0

1

Euler Integration – Example

s3 = (23/16 | -5/8)T (1.44 | -0.63)T;
v(s3) = (5/8 |23/32)T (0.63 |0.72)T;

2

Helwig Hauser 11

0 1 2 3 4

0

1

Euler Integration – Example

s4 = (7/4 | -17/64)T (1.75 | -0.27)T;
v(s4) = (17/64 |7/8)T (0.27 |0.88)T;

2

Helwig Hauser 12

0 1 2 3 4

0

1

Euler Integration – Example

s9 (0.20 |1.69)T;
v(s9) (-1.69 |0.10)T;

2

Helwig Hauser 13

0 1 2 3 4

0

1

Euler Integration – Example

s14 (-3.22 | -0.10)T;
v(s14) (0.10 | -1.61)T;

2

Helwig Hauser 14

0 1 2 3 4

0

1

Euler Integration – Example

s19 (0.75 | -3.02)T; v(s19) (3.02 |0.37)T;
clearly: large integration error, dt too large!
19 steps

2

Helwig Hauser 15

0 1 2 3 4

0

1

Euler Integration – Example

dt smaller (1/4): more steps, more exact!
s36 (0.04 | -1.74)T; v(s36) (1.74 |0.02)T;

36 steps

2

Helwig Hauser 16

0 1 2 3 4

0

1

Comparison Euler, Step Sizes

Euler
is getting
better
propor-
tionally
to dt

Helwig Hauser 17

to dt

Euler Example – Error Table

dt #steps error

1/2 19 ~200%

1/4 36 ~75%

1/10 89 25%

Helwig Hauser 18

1/10 89 ~25%

1/100 889 ~2%

1/1000 8889 ~0.2%

Better than Euler Integr.: RK

Runge-Kutta Approach:
theory: s(t) = s0 + 0ut v(s(u)) du
Euler: si = s0 + 0u<i v(su) dt
Runge-Kutta integration:

idea: cut short the curve arc

Helwig Hauser 19

idea: cut short the curve arc
RK-2 (second order RK):
1.: do half a Euler step
2.: evaluate flow vector there
3.: use it in the origin
RK-2 (two evaluations of v per step):
si+1 = si + v(si+v(si)·dt /2) ·dt

RK-2 Integration – One Step

2

Seed point s0 = (0 | -2)T;
current flow vector v(s0) = (2 |0)T;
preview vector v(s0+v(s0)·dt /2) = (2|0.5)T;
dt = 1

Helwig Hauser 20

0 1 2 3 4

0

1

RK-2 – One more step

Seed point s1 = (2 | -1.5)T;
current flow vector v(s1) = (1.5 |1)T;
preview vector v(s1+v(s1)·dt /2) (1|1.4)T;
dt = 1

2

Helwig Hauser 21

0 1 2 3 4

0

1

RK-2 – A Quick Round

RK-2: even with dt=1 (9 steps)
better
than Euler
with dt=1/8
(72 steps)

Helwig Hauser 22

RK-4 vs. Euler, RK-2

Even better: fourth order RK:
four vectors a, b, c, d
one step is a convex combination:
si+1 = si + (a +2·b +2·c +d)/6
vectors:

Helwig Hauser 23

a = dt·v(si) … original vector
b = dt·v(si+a/2) … RK-2 vector
c = dt·v(si+b/2) … use RK-2 …
d = dt·v(si+c) … and again!

Euler vs. Runge-Kutta

RK-4: pays off only with complex flows

Here
approx.
like
RK-2

Helwig Hauser 24

Integration, Conclusions

Summary:
analytic determination of streamlines
usually not possible
hence: numerical integration
several methods available

Helwig Hauser 25

(Euler, Runge-Kutta, etc.)
Euler: simple, imprecise, esp. with small dt
RK: more accurate in higher orders
furthermore: adaptive methods, implicit methods,
etc.

Flow Visualization
with Streamlines

Streamlines,
Particle Paths, etc.

Streamlines in 2D

Adequate
for overview

Helwig Hauser 27

Particle paths =
streamlines
(steady flows)

Variants (time-
dependent data):

Visualization with Particles

dependent data):
streak lines:
steadily new
particles
path lines:
long-term path
of one particle

Helwig Hauser 28

click2demo (F9!)

Streamlines in 3D

Color
coding:
Speed

Selective
Placement

Helwig Hauser, Eduard Gröller 29

3D Streamlines with Sweeps

Sweeps:
better spatial 3D
perception

Helwig Hauser 30

Illuminated Streamlines

Illuminated
3D curves
better 3D
perception!

Helwig Hauser 31

Streamline Placement

in 2D

Problem: Choice of Seed Points

Streamline placement:
If regular grid used: very irregular result

Helwig Hauser 33

Overview of Algorithm

Idea: streamlines should not get too near to
each other

Approach:
choose a seed point with distance dsep from an
already existing streamline

Helwig Hauser 34

y g
forward- and backward-integration until distance
dtest is reached (or …).
two parameters:

dsep … start distance
dtest … minimum distance

Algorithm – Pseudocode

Compute initial streamline, put it into a queue

Initial streamline becomes current streamline
WHILE not finished DO:

TRY: get new seed point which is dsep away from
current streamline

IF f l THEN li

Helwig Hauser 35

IF successful THEN compute new streamline
and put to queue

ELSE IF no more streamline in queue
THEN exit loop
ELSE next streamline in queue becomes

current streamline

Streamline Termination

When to stop streamline integration:
when dist. to neighboring streamline ≤ dtest

when streamline leaves flow domain
when streamline runs into fixed point (v=0)
when streamline gets too near to itself

Helwig Hauser 36

when streamline gets too near to itself
after a certain amount of maximal steps

New Streamlines

Helwig Hauser 37

Different Streamline Densities

Variations of dsep in rel. to image width:

6% 3% 1.5%

Helwig Hauser 38

dsep vs. dtest

dtest = 0.9 · dsep dtest = 0.5 · dsep

Helwig Hauser 39

Tapering and Glyphs

Thickness in rel.
to dist.

Helwig Hauser 40

Directional
glyphs:

Literature

Paper (more details):
B. Jobard & W. Lefer: “Creating Evenly-Spaced
Streamlines of Arbitrary Density” in Proceedings of
8th Eurographics Workshop on Visualization in
Scientific Computing, April 1997, pp. 45-55

Helwig Hauser 41

Acknowledgements

For material used in this lecture:
Bruno Jobard
Malte Zöckler
Georg Fischel
Frits Post

Helwig Hauser, Eduard Gröller 42

Frits Post
Roger Crawfis
myself... ;) (i.e., Helwig Hauser)
etc.

