

Critical Points and Visualization

Topological analysis of vector fields

- searching critical points $\mathbf{x}^{*}(1 \mathrm{a}):. \mathbf{v}\left(\mathbf{x}^{*}\right)=0$
- ${ }^{\text {- }}$ analyzing flow behavior near \mathbf{x}^{*} (1b.)
- Linearization around \mathbf{x}^{*} :
$v\left(x^{*}+\Delta x\right)=\left.\sum_{>0}(\Delta x \cdot \nabla) v\right|_{x^{*}}=v\left(x^{*}\right)+\left.\Delta x \cdot \nabla v\right|_{x^{*}}$
(Taylor series of \mathbf{v} near $\mathbf{x}^{*}, \Delta \mathbf{x}$ small, $\mathbf{v}\left(\mathbf{x}^{*}\right)=0$)

Helwig Hauser: Topology-based FlowVis

	Critical Points and Visualization
-	Topological analysis of vector fields searching critical points \mathbf{x}^{*} (1a.): $\mathbf{v}\left(\mathbf{x}^{*}\right)=0$ analyzing flow behavior near \mathbf{x}^{*} (1b.) - Linearization around \mathbf{x}^{*} : Linearization around \mathbf{x}^{*} $\mathbf{v}\left(\mathbf{x}^{*}+\Delta \mathbf{x}\right)=\left.\sum_{s 0}(\Delta x \cdot \nabla)^{\prime} v\right\|_{x} \approx=v\left(x^{*}\right)+\left.\Delta x \cdot \nabla v\right\|_{x}$ (Taylor series of \mathbf{v} near $\mathbf{x}^{*}, \Delta \mathbf{x}$ small, $\mathbf{v}\left(\mathbf{x}^{*}\right)=0$) - Jacobi matrix $\left.\nabla v\right\|_{x}$ governs the behavior near x^{*} - Eigenvalue analysis yields classification negative $\lambda_{i} \Rightarrow$ local attraction - positive $\lambda_{i} \Rightarrow$ local repulsion $-{ }^{\text {complex }} \lambda_{i} \Rightarrow$ rotation around x^{*}
	Hemig tauser Topology.based fowws

