
Documentation

Group
Csaba, 12122549
David Bauer, 12120495

Description
First person movement shooter where you try to survive for 5 minutes. The focus is quick
and constant movement to dodge, while trying to shoot the enemies. Perks, multiple
weapons and multiple enemies were planned but not implemented as focus was put on
finishing the effects and required tasks. Additionally the map and the objects are
unfortunately somewhat bland as we did not get around to texturing everything.

Controls
WASD - Movement
Space - Jump
Left Click - Shoot
F1 - Toggle fullscreen
F2 - Toggle debug collisions
F3 - Toggle HUD
ESC - Close game

Gameplay
You spawn on a map and get little time to orient yourself before the first enemies start
spawning in. Enemies have to be shot while avoiding collision with them, as they deal
damage to the player. Some of them are faster than you, so simply running away will not be
enough, at some point you will have to dodge (jumping over them or using the map to your
advantage). Picking up green orbs will heal you for 10 health.

Per default these enemies have around 100 health. You can see your weapon stats on the
bottom right.

Note: The gun has a short cooldown and does not have any feedback when it is shot, so it
may feel unresponsive.

3D Geometry
All our objects are loaded from external .obj files including normals and uvs.



Playable
The player can move around and interact with the game world.

Advanced Gameplay
The player can shoot enemies, who will chase the player. Both the player and enemies have
health and can be killed. Enemies spawn in regular intervals near the player and the player
has to shoot them to avoid losing. There are pickups that can be collected. Additionally the
movement allows the player to build up speed as your movement speed is higher while in
the air.

Min. 60 FPS and Framerate Independence
All our update methods for physics run on a fixed timestep. See: src/gameWorld

Win/Lose Condition
The game consists of a timer that ticks down. If the player survives for that time, they win, if
they die during that time, they lose. After that the game starts again. See:
src/gameplay/gameLoop

Intuitive Controls
The controls are the industry standard for an fps game (wasd, mouse, left click). They also
get shown to the player before the game starts The mouse movement speed as well as the
player speed and drag can be adjusted via a settings file. See: settings.toml

Intuitive Camera
The camera can be controlled by moving the mouse. The mouse sensitivity can be
configured in the config. See: src/game-objects/camera

Illumination Model
We have multiple models, multiple lights and multiple materials, which all have their own
distinct values. Additionally lights get created and removed during runtime.

Textures
Every object has textures attached to it, ranging from a simple single color texture, to
multiple textures for PBS.

Moving Objects
The enemies use physics to move towards the player. The player can fully control his own
collider as well as the camera.



Adjustable Parameters
There exists a config.toml file in which some settings can be adjusted. See:
src/asset-objects/configHandler

Collision Detection (Basic Physics)
We use the ReactPhysics3D framework to create a static environment for the player to move
in. It is also used for player and enemy movement by applying the necessary physics forces.
There exist collision categories which enable some object to pass through one-another.

Advanced Physics
Collision categories (src/game-objects/gameObject.h), trigger colliders, collision callbacks
(src/gameplay/CoolEventListener.cpp) and raycasts (src/weapon/weapon.h) have been
implemented.

Heads-Up Display
We have a HUD in the form of text elements. The elements change dynamically depending
on the game state. See: src/asset-objects/textHandler

Effects

Vertex Shader Animation
Vertex shader animations are present on green orbs which are health pickups. They use a
simple vertex shader that transforms the sphere based on the elapsed time. See:
assets/shaders/anim.vert

Procedural Texture
The enemies have a procedural texture that consists of a gradient texture generated at
runtime. The texture can be seen better when the enemies are standing still next to the
player. See: src/rendering/materials/proceduralTexture

Physically Based Shading
We have implemented a standard PBR shader which includes an albedo map, normal map,
roughness map, metallic map and ambient occlusion map. It is used for the gun that the
player is holding. See: assets/shaders/pbs



GPU Particle System using Transform Feedback
Our particle system uses a call to update (vertex/geometry) and a second call to render
(vertex/geometry/fragment) many particles using transform feedback. The particle effect can
be seen when an enemy is killed. See: src/particleSystem

Resources
● All models/textures/fonts are freely available for personal use
● OpenGL
● GLEW
● ReactPhysics3D
● GLM
● StbImage
● TinyObjLoader
● TOML
● Freetype
● https://learnopengl.com/ (PBS, Text rendering)
● http://www.opengl-tutorial.org/
● https://ogldev.org/index.html (Particles)

https://www.reactphysics3d.com/
https://github.com/nothings/stb
https://github.com/tinyobjloader/tinyobjloader
https://freetype.org/index.html
https://learnopengl.com/
http://www.opengl-tutorial.org/
https://ogldev.org/index.html

