
EZG2022 Group 69: Ocean Story

Miran Saman (01631794)

Chew Wen Jie Jeremy (12229288)

● Brief description of the implementation. Which technology are you using? Has anything

changed from what you have planned during Submission 1 - Proposal?

The camera pans around the landmass, while three dolphins jump over the water at specific intervals.

We then dip underwater. A manta ray glides by, and we see three fishes crossing our paths. Continuing

underwater, we pass by a few more fishes, before coming to a rest near some seagrass. Looking to our

left, we see a whale leisurely swimming by. Turning back, two clownfish zoom past us, seemingly

escaping the shark which comes by a few seconds later. We then back out of the ocean, finishing with a

view of the sun, its reflection in the ocean, as well as the landmass.

We are using C++ and the OpenGL API.

There have not been changes from the original proposal.

● What additional libraries (e.g., for collision, object-loading, sound, …) were used, including

references (URL)?

Libraries used

- Assimp (model loading)

- GLFW + GLAD

- GLM (vector, matrix maths)

- DearImGui (Temporary debug GUI)

- STB (image loading)
- irrKlang (sound)

Resources

- Fish model with textures from Sketchfab
- Animated fish models by quaternius from OpenGameArt
- Seagrass models by quaternius from OpenGameArt
- Ocean resources

- Dudv map + normal map from this tutorial by ThinMatrix
- Caustics texture by leeor_net from OpenGameArt

- Cloud texture by Luos from itch.io
- The landmass noise texture was generated using Python and the noise library.

https://github.com/assimp/assimp
https://github.com/glfw/glfw
https://glad.dav1d.de/
https://github.com/g-truc/glm
https://github.com/ocornut/imgui
https://github.com/nothings/stb
https://www.ambiera.com/irrklang/
https://sketchfab.com/3d-models/clownfish-47ba2679d91a4f14b3fc0bf8e3805af5
https://opengameart.org/content/animated-fish
https://opengameart.org/content/lowpoly-nature-pack
https://www.youtube.com/playlist?list=PLRIWtICgwaX23jiqVByUs0bqhnalNTNZh
https://opengameart.org/node/12979
https://luos.itch.io/free-noise-tex
https://pypi.org/project/noise/


- Background music (RPG - Costal Town Background Music) by Hitctrl from OpenGameArt
- Wave sounds (Beach Ocean Waves) by jasinkski from freesound

● The graphics card on which you tested on (NVIDIA, AMD, Intel, exact model(s)).

NVIDIA GeForce GTX 1660 SUPER

NVIDIA GeForce RTX 2060 SUPER

● Where in your scene can which effects be observed?

Non-complex effects

● We render to texture quite often, and hence we created a framebuffer class that is able to

render to RGB and depth textures. Furthermore, if required, it can also be initialised in such a

manner to allow for post-processing effects.

● The ocean is able to reflect and refract its surroundings (achieved using clipping planes and

projective texture mapping). These reflections/refractions are distorted using a dudv map.

● The ocean surface also uses a normal map for added detail. Blinn-Phong lighting is implemented

as well.

● The ocean’s ebb and flow is modelled using Gertsner waves.

● The “foam” around the shallow regions of the landmass is achieved by sampling the depth

texture and linearly blending from white to the original ocean colour based on the depth.

● The landmass’s height was obtained using a pre-computed noise texture.

● The landmass’ normals were mapped using triplanar mapping.

● The sun’s brightness distortion was achieved using the Henyey-Greenstein phase function.

● The blue environment is a result of a distance-based fog implemented as a post-processing

effect. A box blur is also applied at far distances.

● Underwater caustics was achieved using a pre-generated caustics texture.

○ To determine whether a given fragment was underwater (and hence whether to draw

the caustics), we copy the same Gertsner wave function in the ocean’s vertex shader to

the land’s vertex shader in order to compute the height of the ocean at a given XZ

coordinate. Because the Gertsner waves also move the XZ coordinates, we can only

estimate the height at a given point. First, we compute the XZ displacement of the point

we are interested in. Then, from the original position, we move in the opposite direction

and compute the XZ displacement of that point again. Repeating this twice is enough to

give a fairly accurate estimate of the height of the ocean at a given position.

● The paths of the fishes are quadratic Bezier curves. In order to avoid unnecessary draw calls, the

fish paths each have a predetermined start and end time in which the fishes are drawn and

updated.

https://opengameart.org/content/rpg-costal-town-background-music
https://freesound.org/people/jasinski/sounds/18363/


● Dynamic shadows were also implemented underwater. The shadow map was generated by

treating the sun as a directional light that follows the camera. As the viewing distance under

water is limited, we do not need it to extend beyond that. The shadow map only includes the

seaweed and fish, as other objects (Ocean, Land,... ) do not cast shadows here.

Complex effects

● The underwater scenes are lit using volumetric lighting.

○ The shadow map we use is the same as for the underwater shadows.

○ Volumetric lighting was then implemented using the ray-marching approach that was

shown in the lecture. However, the light contribution calculation was modified to fit our

use case better.

○ The colour of the volumetrics depends on the y-depth relative to the ocean surface

throughout the ray-marching. This was done to mimic the way water seems to turn more

blue the deeper one goes.

● The fishes were animated using vertex skinning.

○ Assimp was used to read the initial model and bone information, which was then

converted into custom structures that rely on hashmaps to avoid storing the full Assimp

scene pointer, as well as avoid recursion when looking for parents and specific bones.

● Describe possible controls of your demo (e.g. how to control the camera, how to

enable/disable effects)!

Once the animation is complete, you can control the camera as follows

WASD for moving, Space to ascend, LShift to descend

C to capture the mouse to look around, V to release it

You can also interact with the debug menu with the mouse.


