
Complications On The Blasted Grog - Submission 1

Implementation

GameActor.h: Stores stats for an actor (i.e. player, enemy) like name, hit points and speed

RenderedObject.h: Data Structure for 3D Objects having the following members

mesh: Mesh - The mesh to be rendered

Mesh.h stores vertex and index buffers
transformation: mat4 - transformation matrix of rendered mesh

color: vec4 - color of the mesh

matDataBuffer: VkBuffer - Buffer for color

desc: VkDescriptorSet - Mesh's descriptor set

material: vec4 - (ka, kd, ks, alpha)

texture: ImageInfo* - texture of mesh

flags - phong shading, is ui element and is active (= should be drawn)

GameObject.h: Implementation of interactive RenderedObject, lets the Meshes move

This is the base struct for every implementation and includes the following members:

_name: String - The name of the GameObject
_renderedObjects: RenderedObject*[] - The List of the actual Meshes of the
GameObject
_transformation: mat4 - The transformation Matrix of the GameObject
(combination of translation, rotation and scale vectors)
objType: ObjectType - enum value of ObjectType for collision detection
Direction Vectors for movement control

Every GameObject and Implementation of GameObject has a parent and children
hierarchy, every child's transformation is dependent of the parent's transformation.
Every GameObject can have multiple children and one parent.

Implements Basic Physics using Bullet.

The first implementation of GameObject, which includes logic for the physics
implementation via bullet library. It has two extra members, which are a pointer to a
btRigidBody and a btTransform which stores the actual transformation of the
RigidBody. The move() -function applies a given force to the RigidBody, whilst the
step() -function updates the btTransform with the calculated values of the physics
simulation.

Implements Movement using Bullet.

struct GameObject

struct PhysicsObject : GameObject

struct CharacterObject : GameObject

af://n0
af://n2

The second implementation of GameObject, which implements logic for an actor in the
game. A CharacterObject has a btPairCachingGhostObject member, which is
responsible for collision detection and physics simulation, which is used by the
btKinematicCharacterController . The Kinematic Character Controller is a simple way
to implement a working character, because it includes useful functionality for jumping
or moving around for example.

Implements Particle Simulation using ParticleSystem implementation described now.

The used ParticleSystem calculates the new positions, colors and sizes on the CPU and
sends the data of alive particles to the GPU to process.

ImageInfo.h: Stores data for Image Loading

ImageSource.h: Describes the members for image loading using stb_image.h

ImageSource.cpp: Implements the members from ImageSource.h and loads in images.

ROMan.h: Describes members for creating 3D Objects and loading 3D Objects from files
using Assimp

ROMan.cpp: Implements the following members:

create_rendered_object() - Creates a RenderedObject (= 3D Object Data Structure)
and stores its buffer.

create_ui_object() - Creates a RenderedObject with 2D Texture and UI Flag

destroy_rendered_object() - helper function for cleanup

load_rendered_objects()

This function loads a 3D Object from file using the Assimp Importer and converts every
loaded Mesh to a RenderedObject.

getAllRenderedObjectsFromNode() - helper function for converting loaded Objects
from a aiNode to RenderedObject s

LUAHelper.h: Describes structure for basic LUA loading, can load files, read ints, strings,
floats and table values

LUAHelper.cpp: Implements the functionality of LUAHelper.h

FunctionLUAHelper: Implementation of LUAHelper for processing LUA functions. Usage:
Enemy.h

Enemy.h: Implementation of CharacterObject which tracks the player's position and moves
the Enemy Actor accordingly. Enemy Movement is controlled in external Enemy.lua Script.

ParticleSystem: The Particle System calculates the Particle Data on the CPU and sends it
through three Uniform Buffers (one for particle position and size, one for particle color and
one for camera data (view, projection)). It renders up to 1000 instances of the same squad
with different data using instanced draw (vkCmdDraw's third argument - see draw_particles
function in main.cpp).

Animation Vertex Skinning: The RenderedObject Manager uses AssImp to find out if a
Mesh contains bones and if so load the mesh with all data with
MeshSource::aiSkinnedMeshToMesh() function. Update animation in game loop by adding
up the deltatime and calling ROMan::update_rendered_object_animation() function.

struct ParticleObject : GameObject

Features

Camera movement: Mouse
Toggle Mouse Mode: Left ALT
Move Character: WASD
Walk faster: Left SHIFT
Attack: F
Jump: Spacebar
Exit Game: ESC

The basic combat is implemented very minimally. You can defeat the enemy by hitting them with
the sword multiple times.

Implemented compulsory Gameplay

3D Geometry - Player Model and Ship Model from opengameart.com
Playable - Simple Movement implemented
Advanced Gameplay - Enemy can be damaged, when enemy dies game closes
Min. 60 FPS and Framerate Independence - Deltatime is calculated using std::chrono library
Win/Lose Condition - Either you kill the enemy [WIN] or enemy kills you [LOSE]
Intuitive Controls
Intuitive Camera - Changeable in settings.ini file
Illumination Model (Press M for moving lights)
Textures - UI Elements have a texture
Moving Objects - Enemy, Player
Adjustable Parameters - settings.ini
Documentation

Implemented optional Gameplay

Collision Detection (Basic Physics)

Advanced Physics - Collision Callback, Push brown box with sword (Press F)

Scripting Language Integration - LUA Binding, edit enemy's movement behaviour in
assets/lua/Enemy.lua at runtime

See BlastedGrogSolution\src\LUAHelper.h for the implementation
Heads-Up Display (functional Healthbar)

Implemented Effects

Advanced Modelling: CPU Particle System - Ship Particles, Jump Particles, Enemy Hit
Particles

BlastedGrogSolution\src\ParticleSystem.h & BlastedGrogSolution\src\ParticleSystem.h
BlastedGrogSolution\assets\shader\particleShader.vert.glsl &
BlastedGrogSolution\assets\shader\particleShader.frag.glsl

Animation: GPU Vertex Skinning

BlastedGrogSolution\src\MeshSource.cpp::aiSkinnedMeshToMesh()
BlastedGrogSolution\assets\shader\skinnedVertexShader.glsl

Shading: Cel Shading (BlastedGrogSolution\assets\shader\phongFragShaderCel.glsl)

af://n92

Libraries used

Assimp for 3D Object loading
Bullet for physics simulation and collisions
Irrklang for Audio
Lua not used currently
stb_image.h for 2D Image Loading
Freetype not used currently
Vulkan Graphics Library

af://n164
https://github.com/assimp/assimp
https://github.com/bulletphysics/bullet3/releases
https://www.ambiera.com/irrklang/
http://lua-users.org/wiki/BindingCodeToLua
https://github.com/nothings/stb/blob/master/stb_image.h
https://www.freetype.org/

	Complications On The Blasted Grog - Submission 1
	Implementation
	Features
	Libraries used

