

 Spacescape Documentation

Gameplay:

3D Geometry:

There are different 3D-Objects in the scene which have all been created and uv-unwraped using
Blender. The models are loaded by the class OBJLoader.cpp which we implemented ourselves. It
reads the vertex positions, normals and uv coordinates and returns an GeometryData object
which is a struct we used from the ECG-Framework. Further the GeometryData is then given to a
Geometry object which is also from the ECG-Framework and then rendered. Other Geometry
like the quad of the post-processing or the cubes of the particle system are generated separately
in their respective classes without using anything from the ECG-Framework.

Playable/Advanced Gameplay:

The Game is completely playable. The game logic is handled by game.h which calculates
positions and velocities of the objects as well as handles player input. The goal of the game is to
reach the open space and pass through the packages without colliding with them. Further there
is a fuel resource which must not be 0 otherwise it is game over. Fuel can be restored by
collecting stars.

60 FPS and Framerate Independence:

The current frame duration is around 7ms and all logic calculations are done in respect do the dt
value which lets us achieve Framerate Independence.

Win/Lose Condition:

A Player either loses if he runs out of life or if he runs out of fuel. Once a life is lost it cannot be
restored. However, fuel has to be restored by collecting stars in order to make it to the end. The
player wins the game if he manages it to maneuver through the objects to the end.

Intuitive Controls:

The controls are more detailed in the controls section of this document, but are very straight
forward. They are simple WASD controls with shift for boost and the mouse to turn the camera
depending on the angle the player wants.

Intuitive Camera:

There are two cameras implemented in the game. The player camera is a standard 3rd person
camera which can be adjusted via the mouse and it is handled by cameraPlayer.cpp. The other
camera is the debug camera which can be accessed via F3. Here it is possible to fly freely through
space. The debug camera is handled by cameraDebug.cpp and has slightly different controls
which are explained in the controls section of this document.

Illumination Model:

For the illumination model we used the light parts from the ECG-Framework. There is currently
one point light source and one directional light in the scene. Both light sources are passed to
those shaders which are sensitive for light, for example the pbr shader.

Textures:

The player rocket, packages, and stars have all images textures on them with mipmapping and
trilinear filtering enabled. The skybox also has a cubemap image texture on it in order to
function. Further we implemented a video texture on the barriers. For image textures we used
the texture.h class from the ECG-Framework, however, for the cubemap texture and the video
texture we implemented separate classes which are called cubemapTexture.cpp and
videoTexture.cpp respectively. Further we used the material class from the ECG-Framework as a
starting point for our development and implemented subclasses with slight changes regarding
the texture they receive. There are now the subclasses textureMaterial which handles the image
textures (e.g., for the rocket, packages and stars), cubemapMaterial which handles the skybox
and videoMaterial which handles the video texture.

Moving Objects:

Moving objects in our game are the packages and the rocket. Technically every object could
move, but because of gameplay reasons the barriers and the stars do not move. Movement
vectors and positions are calculated by game.h according to the dt value for framerate
independence.

Collision Detection:

The collision detection is implemented very simplified by just using bounding spheres, i.e. a radius
around each objects position which represents the object. Hereby we also used a variable called
_boundingsphereCenter which moves the center of the bounding sphere locally. Every bounding
sphere was drawn and exactly adjusted to the models. Collision detection is handled in the update
function of game.h. A player can collide with packages or stars or if he runs in one of the borders
(top, down, left, right).

Heads-up Display:

There are two HUD elements which can be toggled by F3: hearts, which represent the remaining life
of the player and fuel, which represents the remaining fuel (each fuel barrel represents 25 fuel). We
used two textures, one with a heart and one with a barrel. These textures are then given on a cube
which has no perspective transformations. We then blended the background away so that we are
only left with the heart and barrel part of the texture. Shaders used for this are hud.vert and
hud.frag.

Controls:

F1 – toggle wireframe mode (only possible if no post-processing is applied)

F2 – toggle backface culling

F3 – toggle between game and debug mode

F4 – change resolution to 1600x900

F5 – change resolution to 1920x1080

F6 – change resolution to default (according to value in settings.ini)

F9 – toggle HUD

If in game mode:

WASD - rocket movement (up, down, right, left)

Shift – for activating the rocket’s boost

Mouse wheel – zoom in and out

Mouse input – move camera around rocket if left button is down

If in debug mode:

WASD – camera movement (forward, backward, right, left)

EQ – additional camera movement (up, down)

Shift – fast movement

Effects:

CPU Particle System:

A CPU particle system is implemented for the exhaust of the spaceship. The particle system uses
instancing and is implemented in ParticleSystem.cpp. The according shaders to it are
particle.vert and particle.frag. The particles positions are also changed according to the dt value
and color is interpolated over lifetime. The ParticleData struct represents a default particle and
the Particle struct represents each individual particle at any given time.

Video Texture:

A video texture was implemented on the barriers. The videos duration is about 4 seconds and
has 100 frames. The texture is implemented in videoTexture.cpp. In main the dt time between
each frame is summed and if the sum is greater than a certain number the texture loads the next
frame with glTexSubImage2D in order to prevent a complete reinitialization of the texture.

Physically Based Shading:

Since none of the team members implemented a PBR illumination model in ECG, we
implemented the Cook-Torrance model in pbrShader.vert and pbrShader.vert. The shader was

mostly implemented using this and this reference. The metallic and roughness parameters can
be adjusted via uniforms, currently they are adjusted in
Spacescape::setSpecificObjectUniforms(). Also, when creating the material there is a material
parameters vector (like in the ECG-Framework) given to the shader. Here the x coordinate of the
vector adjusts the amount of ambient light, however the y and z coordinate do not adjust
anything. This could definitely be implemented cleaner but we decided to use the same material
for each object and just alter the material parameters in the drawing loop.

Bloom/Glow:

A post processing Shader was implemented which gets a framebuffer of the scene as texture and
is then drawn on the main framebuffer. Further we used two output buffers: one buffer for the
regular image and one buffer for the bright parts of the image which are then blurred. Both are
then combined in postProcessing.frag in order to achieve the bloom effect. With using two
output buffers on each object shader, we can define what elements of the scene shall have
bloom. Currently only the particle system and the barriers have bloomed since they are the only
emissive materials in the scene.

Music and SFX:

Added FMOD sound library. FMOD dll has been added to the project. Class was created using
certain features of FMOD library. Continuous playback for music. The once-play feature has been
set for sounds. Music and Sounds are used with a single 5-layer array and an enum set for sound.
It is used by calling the getter function from Game.h.

https://learnopengl.com/PBR/Theory
https://www.youtube.com/watch?v=RRE-F57fbXw

