
Eurographics Workshop on Rendering (2002)
Paul Debevec and Simon Gibson (Editors)

Textured Depth Meshes for Real-Time Rendering of
Arbitrary Scenes

Stefan Jeschke and Michael Wimmer

Institute of Computer Graphics and Algorithms, Vienna University of Technology

Abstract
This paper presents a new approach to generate textured depth meshes (TDMs), an impostor-based scene repre-
sentation that can be used to accelerate the rendering of static polygonal models. The TDMs are precalculated for
a fixed viewing region (view cell).
The approach relies on a layered rendering of the scene to produce a voxel-based representation. Secondary, a
highly complex polygon mesh is constructed that covers all the voxels. Afterwards, this mesh is simplified using a
special error metric to ensure that all voxels stay covered. Finally, the remaining polygons are resampled using
the voxel representation to obtain their textures.
The contribution of our approach is manifold: first, it can handle polygonal models without any knowledge about
their structure. Second, only scene parts that may become visible from within the view cell are represented, thereby
cutting down on impostor complexity and storage costs. Third, an error metric guarantees that the impostors are
practically indistinguishable compared to the original model (i.e. no rubber-sheet effects or holes appear as in
most previous approaches). Furthermore, current graphics hardware is exploited for the construction and use of
the impostors.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation
– Display algorithms, I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism – Virtual reality

1. Introduction

One main focus of computer graphics for a considerable
amount of time already has been the real-time display of
very large and complex geometric models. Many different
approaches have been invented addressing this aim, includ-
ing visibility calculations20, level-of-detail approaches13 or
image-based rendering2. In many cases, visibility culling is
not efficiently applicable due to insufficient scene occlusion,
and level-of-detail rendering also cannot be used either, for
instance because of unsuitable scene structure. In such cases,
image-based rendering (IBR) methods are usually called for,
because their rendering complexity mostly depends on the
resolution of the output image, and not on the total number
of primitives in the scene. Image-based entities used as al-
ternative representations for fast rendering of scene parts are
usually called impostors.

One special kind of impostors are textured depth meshes
(TDM)1, 18: a texture with detailed scene appearance infor-
mation is mapped to a simple polygonal mesh that emulates

the rough scene structure, thus cutting down on rendering
and storage costs for the represented scene part. The advan-
tages of the TDM technique compared to other approaches
are:

1. Parallax movements that appear when the observer moves
in the scene are correctly represented so that the impos-
tor is valid longer than simpler representations such as
billboards10.

2. The storage cost of TDMs is low compared to
more complex image-based representations like layered
impostors14 or layered depth images16.

3. Efficient treatment by graphics hardware is guaranteed
due to the polygonal nature of TDMs in contrast to
more complex representations19, which are not directly
amenable to hardware acceleration.

However, although TDMs are very useful to accelerate the
rendering of large scene parts, their creation is in general a
difficult task which made them to date hard to use in practi-
cal applications.

c© The Eurographics Association 2002.



Jeschke and Wimmer / Textured Depth Meshes

In this paper, a new algorithm will be presented that gen-
erates high-quality textured depth meshes for a fixed region
of space called a view cell. The algorithm extends work pre-
sented by the authors in a previous paper8. Basically, it re-
lies on the following principle: the scene is sampled using
a special kind of slicing, thereby creating a layered voxel
representation. In the previous approach, for every voxel
layer a small set of polygons is computed that tightly cov-
ers the rendered voxels. The polygons are then placed into
the scene, representing different ranges of depth to emulate
parallax movements within the scene. Because layer spacing
gets very tight in the vicinity of the view cell, the approach
results in too many polygons when representing objects near
the view cell.

This paper overcomes this drawback by extracting infor-
mation about the connectivity between successive voxel lay-
ers: using the voxel field, polygon meshes are generated that
are complex, but have a very simple structure and cover all
the recorded voxels. After the scene is completely recorded,
the resulting meshes are simplified. Finally, the voxel field
is used to obtain textural information for the polygons. A
special error bound guarantees that the final representation
is practically indistinguishable from the original geometry it
replaces.

The main contribution of this paper is an algorithm for
generating textured depth meshes which offers several ad-
vantages over previous approaches:

1. It can deal with arbitrary static models, even if no scene
structure is available.

2. The algorithm shown in this paper guarantees high out-
put image quality by ensuring that the differences be-
tween the impostor and the geometry it represents are
practically imperceptible. In particular, no image cracks
or rubber-sheet effects due to missing information about
hidden scene geometry or aliasing effects due to over- or
undersampling of the scene appear at all.

3. Only scene parts that definitely become visible when the
observer moves within the view cell are covered by the
TDM. This results in an extremely compact impostor rep-
resentation.

4. In contrast to the layer-aligned impostor representation
introduced by the authors, it is now possible to compute
a simple mesh consisting of very few textured polygons
even for objects with a relatively small distance to the
view cell.
Through this, the geometric complexity of the impostor
representation is totally decoupled from the number of
voxel layers that where used to generate the TDM.

The remainder of the paper is organized as follows: after
a short review of previous work in section 2, an overview of
the TDM generation process is given in section 3. Section 4
introduces the algorithm to sample the scene and create the
voxel field. Section 5 describes the generation and section 6
the simplification process of the meshes. After that, section 7

describes how the textural information for the polygons is
computed using the voxel field, and section 8 gives the for-
mulas for the transformation of the generated mesh into the
scene. Results obtained with our approach are given in sec-
tion 9, and section 10 presents final conclusions.

2. Previous work

Many image-based methods have been published in recent
years that accelerate the real-time rendering of highly com-
plex environments, including point-based rendering19, light-
field rendering9, or image warping2, to name just a few. We
will review here only a subset of these methods that are di-
rectly related to our work.

The idea of using image-based representations to replace
complex geometric objects was first introduced by Maciel
in 199510: a particular object is rendered into a texture
map with transparency information, and then mapped onto
a quadrilateral placed into the scene in place of the object.
The resulting primitive is called an impostor. Schaufler et
al.15 and Shade et al.17 used this idea to build a hierarchical
image cache for an online system, with relaxed constraints
for image quality.

When using only one quadrilateral, the object is repre-
sented poorly by the impostor if the observer moves too far
away from the point the image was produced (the so-called
reference viewpoint). Therefore, several authors have pre-
sented methods that use varying levels of geometric infor-
mation to overcome this drawback: depth can be added in
layers14 or per point sample—in particular, layered depth
images (LDI)12, 16 provide greater flexibility by allowing
several depth values per image sample. However, LDIs con-
tain more information than necessary for a good represen-
tation of parallax effects, and are not amenable to hardware
acceleration.

Depth information can also be added using
triangles5, 11, 18, which results in textured depth meshes. To
handle the problem of image cracks or rubber-sheet effects
due to missing scene parts in the impostor representation,
Decoret et al.6 used several mesh layers of different depth
to include hidden geometry. Furthermore their approach
combines precalculated TDMs with online optimization to
improve overall image quality. However, the approach is
based on the restriction that the observer is only allowed
to move along a line rather than inside a view cell and
furthermore, no criteria guarantees that image cracks or
rubber-sheet effects are avoided (the last drawback also
applies to Darsa’s5 and Aliaga’s1 approach).

In this paper, a general geometry-sampling algorithm pre-
sented by the authors in previous work8 is used for generat-
ing a high-quality textured depth mesh, drastically simplify-
ing arbitrary geometry and at the same time providing high
output image quality.

c© The Eurographics Association 2002.



Jeschke and Wimmer / Textured Depth Meshes

Figure 1: Overview of our method for constructing textured depth meshes (from left to right): the original object (1880 poly-
gons), the initial mesh constructed from the voxel field (61584 polygons), the simplified mesh (35 polygons), close-up view of
the final textured mesh.

3. Overview

The algorithm that generates the TDMs involves the follow-
ing steps (see figure 1):

1. The user needs to decide on the size of the view cell, on
the desired display resolution the TDM should be created
for, and on the scene parts that should be represented by
the TDMs.

2. A voxel field is generated by rendering the scene from the
reference viewpoint using our previous algorithm, which
will be covered briefly in section 4 for better understand-
ing and for introducing slight changes pertaining to the
present paper.

3. An initial (very complex) mesh that covers the whole
voxel field is created (section 5).

4. The complex mesh is simplified (section 6).
5. Textures for the polygons of the simplified mesh are gen-

erated by sampling them in the voxel field (section 7).

4. Recording a voxel field

This section shortly reiterates the process of recording scene
parts into a voxel field by slicing the scene into several voxel
layers that represent different depths ranges. Modifications
to the original algorithm are discussed, most notably the
transformation of the final voxel field into a uniform grid
in section 4.3.

Reference viewpoint

Sampling layer

View cell

Voxel field

Border layer

Voxel

Figure 2: Layout of the voxel field for a view cell.

Figure 2 shows how voxel layers are arranged for a par-
ticular view cell (w.l.o.g. the algorithm is discussed for a
cubic view cell). Note that each layer represents geometry
within a certain depth range. The sampling layers are posi-
tioned in the middle (with respect to the parallax angle de-
scribed further below) of each voxel layer. The border lay-
ers show where the transition between two layers take place:
objects in front of a particular border are represented by the
sampling layer nearer to the view cell, objects to the back
are represented by the sampling layer farther away from the
view cell.

When generating a voxel layer, the appropriate sampling
layer is rendered from the reference viewpoint, with the near
and far clipping planes set to the adjacent border layers. The
colors of the rendered pixels in a sampling layer define the
color of the respective voxel.

While the size of the view cell is defined by the user di-
rectly, the placement of the sampling layers and their cor-
responding depth ranges (i.e., position of the border layers)
will be calculated automatically. The only user inputs to this
calculation are the objects to be represented by the TDM and
the desired image resolution.

4.1. Layer placement calculation

Two errors have to be taken into account when calculating
an optimal placement of the voxel layers: parallax errors and
movements between voxels of different layers.

Parallax errors: The sampling layers need to be placed so
that they “faithfully” represent the geometry they replace as
long as the observer stays within the view cell. In order to
quantify “faithfully”, we characterize the error that occurs
when viewing the sampling layer from a position different
from the reference position using the parallax angle α (see
figure 3). This is the angle between the true 3D position of
a point F and its projection F ′ to the sampling layer, when
seen from a position V different from the reference view-
point Vr (see also17). Obviously, if α is less or equal to the
minimal angle subtended by a pixel in the output image for
every voxel, the difference between the projected geometry

c© The Eurographics Association 2002.



Jeschke and Wimmer / Textured Depth Meshes

�

F

V

Vr

F’

�
2

� � m

Fy

F’y

Fx

Figure 3: Maximum parallax angle between a 3D point F
and its projection F ′ on the sampling layer within a view
cell.

and its voxel representation is not greater than one pixel in
the output image.

The goal is to find out in which configuration the max-
imum parallax error occurs, so that we can calculate from
this the maximum possible depth range that guarantees that
a given parallax angle will not be exceeded. As was stated
previously8, this maximum error occurs from the corner of
the view cell under a viewing angle of φ between the point
one of the border layers and its projection to the sampling
layer (see figure 3).

Here, the original algorithm has to be modified: since for
recording TDMs, the actual field of view is defined by the
size and distance of the part of the scene to be recorded rather
than using the special case of 90 degrees, Fx (figure 3) might
exceed the view frustum to the left or right, as will occur for
small and distant objects forming a narrow frustum. In this
case, Fx is replaced by the intersection of the border layer
with the respective view-frustum boundary. The remainder
of the calculation for the parallax error is not affected.

Movements between pixels: Two successive sampling lay-
ers should not move more than the size of one pixel against
each other. This restriction is the basis for the algorithm that
removes invisible scene parts in the voxel field (see further
below). Obviously, the maximum pixel movement appears
when the observer looks from one corner of the view cell
to pixels at the opposite side of the voxel field as shown in
figure 4.

Again we cannot rely on a 90 degree field of view, so
the minimum allowable distance to the next closer sampling

Fy

V

Py

m

Vr

Res

Figure 4: Maximum pixel movement of a sampling layer
within a view cell.

layer, Py (figure 4), should be evaluated by:

Py =
(tan(FOV

2 )+1) ·Fy

1+ tan(FOV
2 ) · (1+2 · Fy−m

RES·m )
, (1)

where Res defines the resolution of the sampling layers
and FOV is the field of view of the frustum enclosing the
selected scene part. Py must be calculated in both sampling
directions (x and y) of the voxel field, and the larger value
has to be chosen. It is then compared to the value F ′

y (see
figure 3, obtained by the calculation addressing the parallax
error). The larger of the two defines the actual distance of
the sampling layer.

For a detailed description of all necessary calculations and
a discussion on the number of layers necessary to cover a
certain depth range, our previous paper should be consulted8.

4.2. Removing invisible scene parts

Normally, many voxels in a distant layer are occluded by
voxels in layers closer to the view cell. The algorithm for
removing those invisible voxels is briefly repeated here, fol-
lowed by a description of crucial modifications necessary for
the present paper.

The algorithm consists of the following steps, repeated for
each pair of adjacent sampling layers (see figure 5 for the
problem in 1D, (a) shows the initial configuration).

1. Mark pixels in the more distant sampling layer as hidden
if they are behind opaque texels of the closer layer which
are not border pixels (see figure 5 (b)). Pixels in the closer
layer already marked hidden in a previous step must be
interpreted as opaque in this step (figure 5 (c)).

2. Set all hidden pixels in the closer layer as transparent,
thus excluding them from further consideration (figure 5
(d)). Repeat step one with the next more distant layer.

In our previous approach, gaps between layers were filled

c© The Eurographics Association 2002.



Jeschke and Wimmer / Textured Depth Meshes

Transparent pixel Opaque pixel

Hidden pixel

(b)

(c) (d)

Opaque border pixel

(a)

Figure 5: Removing pixels in the sampling layers that are
hidden behind layers closer to the viewpoint.

with information from the neighboring pixels as long as the
gap was not larger than one pixel, which is ensured by the er-
ror metric described above. However, surfaces viewed from
a sharp angle may not be recorded at all in some layers, be-
cause the part of the surface visible in those layers falls be-
tween two adjacent pixel centers in the sampling layer. In
this case, gap filling does not work because information is
missing in more than two consecutive layers, which also cre-
ates problems for the mesh generation step further on.

To remedy the situation, in this paper we take a different
approach to gap filling and treating surfaces under oblique
viewing angles. The basic idea is to ensure that the follow-
ing condition is always fulfilled when rendering the voxel
layers: if a continuous surface extends over two consecutive
voxel layers, no discontinuities are allowed between the rep-
resentations in the two layers, i.e., all the pixels defined by
the intersection of a polygon at the far border in the closer
layer are also represented in the following layer. Note that if
this condition is observed, all voxels occluded by the contin-
uous object surface will be properly deleted in the following
layers by the removal algorithm described above.

As described above for the example of viewing oblique
surfaces, this condition is not always fulfilled due to the ras-
terization rules of graphics hardware (see figure 6, left).

Therefore we have to make sure that along the intersection
of polygons with the near and far border layer of a voxel,
pixels are drawn even if they are only partly covered by a
polygon, especially if the pixel center is not inside the poly-
gon. The way to ensure this is to manually clip each polygon
to the corresponding near and far border layer of a voxel,
and draw the resulting polygon edges explicitly (see figure 6,
right). On today’s hardware, lines also have to be drawn in
a predefined direction (e.g., from left to right) to ensure that
identical pixels are rasterized for every edge. The result is

Figure 6: Left: the polygon edge clipped on the border
plane is not represented completely in both adjacent sam-
pling layers. Right: by drawing the outline of the clipped
polygon explicitly (light pixels), a complete representation
of the clipped edge is generated in both sampling layers.

that all pixels belonging to edges clipped on the border lay-
ers are represented in both adjacent voxels.

After using the algorithm described at the begin of this
section—including the modification just discussed—to re-
move invisible pixels (and hence the respective voxels), each
layer contains exactly the information that might become
visible when the viewer moves within the view cell.

4.3. Uniformly sized voxels

The voxel field generated so far contains layers with non-
uniform spacing according to the parallax and visibility error
measures described above. For further treatment, however, it
is advantageous to transform the voxel field into a normal-
ized, uniform voxel grid (i.e., a grid with cubic voxels and a
maximum total sidelength of 1, see figure 7).

1

1

0.5

0.5

0

Figure 7: Transforming the recorded voxel field (left) into a
normalized, uniform voxel field (right).

The transformed voxel centers can actually be determined
using only the layer numbers and integer pixel coordinates.
First, determine smax, the maximum of the number of voxel
layers and the sampling resolutions in x and y. The position
pv of the voxel corresponding to a pixel with 2D coordinates
PIXx and PIXy in sampling layer l is then calculated as fol-
lows:

c© The Eurographics Association 2002.



Jeschke and Wimmer / Textured Depth Meshes

pv
x =

PIXx +0.5
smax

,

pv
y =

PIXy +0.5
smax

,

pv
z =

l
smax

.

This special voxel arrangement influences the error met-
ric used during the mesh-simplification step later on in a way
such that projected errors for views within the view cell are
accounted for rather than the simple geometric distance be-
tween vertices.

5. Mesh generation

The first step in creating the final TDM representation from
the voxel field discussed in the previous section is to pro-
duce an intermediate mesh that is highly complex, yet of
very simple structure. While the intermediate mesh can be
quite large, it is very easy to create and is highly amenable
to simplification.

The basic approach is to apply a meshing operator af-
ter rendering every sampling layer. This operator connects
all adjacent voxels in the current layer and closes connec-
tions to the previous (less distant) one. Those connections
are detected with the help of the consistent representation of
clipped edges for continuous surfaces as was described in
section 4.2.

For clarity, we start by describing the process for a sin-
gle voxel layer. An obvious approach would be to simply
connect the centers of adjacent voxels as shown in figure 8,
left. However, this leaves voxels with only one neighbor un-
accounted for. To overcome this problem, four vertices are
distributed evenly on the sampling layer of a voxel and used
for connecting to adjacent voxels (figure 8, right).

?

Figure 8: Covering voxels with only one neighbor is not pos-
sible using a single vertex (left). At least two connecting ver-
tices are necessary (right).

This configuration creates more polygons, but allows cov-
ering all connected voxels in a layer with a mesh by applying
a series of simple steps for every voxel as described in the
following. The illustrations show the previous (closer) and
the current (more distant) layer as seen from the reference
viewpoint. Gray signifies filled voxels.

In the first phase, connections are made in the current

layer if any of the involved voxels in the previous layer is
not filled. From left to right and top to bottom in figure 9,
the current voxel is first connected to itself, then to the right,
to the bottom, and to all 3 neighboring voxels, if the voxels
shown in gray are filled in the current layer, but at least one
of them is not filled in the previous layer.

Figure 9: Connections made in the current layer if any of
the voxels in the previous layer above the filled (gray) voxels
is not filled.

In the second phase, the current voxel is “sealed off” to-
wards each of 4 sides if both the voxel itself and the corre-
sponding voxel in the previous layer is filled. In addition, for
a particular side, the voxel is only sealed off if the voxel in
the previous layer towards this side is not filled, as shown in
figure 10.

Figure 10: Sealing off towards each side if a voxel towards
a side is not filled in the previous layer.

The third and final phase connects 2x2 blocks (2 in the
current, 2 in the previous layer) of filled voxels if any of the

c© The Eurographics Association 2002.



Jeschke and Wimmer / Textured Depth Meshes

Figure 11: Connecting 2x2 blocks of voxels.

2 facing voxels in the previous layer is not filled, as shown
in figure 11.

Note that the total number of polygons generated in this
algorithm could be reduced by a factor of 2 to 3 by adap-
tively introducing extra vertices only where needed. How-
ever, this would also complicate the mesh-generation pro-
cess and should be considered only in memory-constrained
situations. Also note that the number of polygons generated
is output sensitive due to the removal of invisible parts of
the scene, and therefore the mesh is not expected to grow
beyond a size that can easily be handled in memory.

One of the challenges in the mesh-generation process is
recording and maintaining mesh connectivity. In practice,
when a new polygon is created through one of the steps de-
scribed above, a vertex table is used to determine whether
the polygon can be directly connected to any of the existing
meshes. If only one candidate mesh is found, the polygon
is added to it and the algorithm proceeds. If it can be con-
nected to more than one mesh, however, all the candidate
meshes are merged using this new polygon as a connection.
If the polygon can not be connected to any existing mesh, it
is used to start a new mesh containing only this polygon.

The method described in this section does not produce
more individual meshes than strictly necessary because of
occlusion and disjoint parts of the scene. When rendered, the
set of resulting meshes covers all the voxels from the original
representation. Note that while at the borders the resulting
meshes may be slightly smaller than the set of voxels they
cover, this is correct since due to rasterization, the voxels are
usually slightly larger than the objects they represent.

6. Mesh simplification

The meshes produced by the algorithm presented in the last
section provide a good starting point for the application of

a mesh simplification algorithm in order to significantly re-
duce their complexity. The aim is to produce a set of sim-
ple meshes that still cover all the voxels touched by the ini-
tial mesh. Although most of the simplification approaches
presented in recent years13 could be applied, the specific
structure of the problem suggests the development of a new
method.

The approach presented here is conceptually related to
simplification envelopes4 by its use of a surrounding vol-
ume bounding the simplification process. Individual simpli-
fications are based on edge contractions (using the QSlim
simplification software developed by Michael Garland7).

The algorithm proceeds by inserting all edges into a prior-
ity queue sorted by edge length, and iteratively removing the
shortest edge from the queue. This edge is checked against
the voxel grid (see below), and if it can be contracted, all
edges affected by the contraction are resorted or reinserted in
the queue according to their new length. If contraction fails,
the edge will only be reconsidered if it is reinserted into the
queue because a neighboring edge is contracted. The pro-
cess continues removing the shortest edge from the queue
until the priority queue is empty.

Always choosing the shortest edge for contraction favors
a uniform simplification and prescribes a useful order even
for finely tesselated coplanar regions. Using other error met-
rics for ordering the priority queue would fail in such cases
and lead to slither triangles because the simplification order
would be more or less random. Also note that an edge con-
necting two sampling layers has the same length as an edge
between two pixel centers in the warped voxel grid the al-
gorithm is operating in (see section 4.3). But this is exactly
what we are looking for, because the length in the warped
grid corresponds approximately to the perceived length af-
ter projection to the screen. In this way, edges that appear to
have the same length on screen are treated equally, regard-
less of their length in world space.

A crucial part of the algorithm is the test whether an edge
can be contracted. This test basically checks whether the re-
sulting mesh still covers all relevant voxels and is described
in the following.

At first, while creating the initial mesh, each polygon
stores identifiers for all voxels it covers (this is trivial to com-
pute due to the mesh structure). Now, assuming a contraction
between the vertices v1 and v2 should be performed, the nec-
essary steps are:

1. Collect the voxels covered by the polygons that include
v2 by simply accumulating the stored voxels for every
involved polygon.

2. Contract v2 to v1 and check if the voxel set computed in
the previous step is also covered by the resulting poly-
gons (using a polygon-box intersection test). If not all
voxels are covered, undo the contraction, and either ex-

c© The Eurographics Association 2002.



Jeschke and Wimmer / Textured Depth Meshes

?

Figure 12: An example for a forbidden (top) and an allowed
(bottom) contraction in a 3D case.

change v1 and v2 and repeat with step 1, or, if v1 and v2
were just exchanged, exit (the contraction failed).

3. If all relevant voxels are covered by the new polygons,
store for each new polygon the set of voxels that are cov-
ered by it (this information has already been computed as
a byproduct of step 2).

See figure 12 for a 3D example. This test is adequate for
the interior of the mesh, but for boundary edges, special
treatment is required. First, contracting a boundary vertex
towards the interior of the mesh might be allowed because
the resulting mesh still covers all relevant voxels—however,
this will create a crack in the representation (see figure 13
for a 2D case). Therefore, contractions involving boundary
vertices are only allowed if the contraction is “towards” a
boundary vertex.

Figure 13: Left: The initial configuration with the light
edge to be contracted. Middle: This contraction away from
a boundary vertex is forbidden because it would create a
gap, although all (enlarged) voxels are still covered. Right:
Contracting towards the boundary vertex leads to a correct
mesh.

Second, contracting a boundary edge may incorrectly
cause empty voxels to be covered (see figure 14). This can
be prevented by calculating the intersection intervals of the
new boundary edge with all relevant voxels (using a fast
edge-cube intersection routine) and test whether the union of
these intervals completely covers the edge. If an empty edge
interval remains, the contraction is rejected. These two con-
straints prevent errors on the boundaries while still allowing
for sufficient simplification.

contractionV1

V2

empty edge interval

Figure 14: The shown contraction is not allowed because an
empty edge interval would result. The dotted boxes indicate
the enlarged voxels for intersection testing with the polygon.

Finally, it should be noted that the size of the box repre-
senting a voxel for testing against a polygon can be used as
a simple criterion to trade off rendering speed against accu-
racy: increasing the size of a voxel results in more simplified,
but slightly less accurate meshes. Here again the warped
mesh representation calculated in section 4.3 plays an im-
portant role, as it provides a one-to-one correspondence of
screen-space pixel error to the factor used to increase voxels.
A factor of about 1.5 to 2 has proven to result in dramatically
simplified (see section 9), but still fairly accurate meshes.

7. Texture generation

The result of the simplification step is a simple geometric
representation that covers the voxel field. In the next step,
the polygons in this representation need to be assigned color
information via texture maps.

This can be done efficiently by sampling the voxel map for
each polygon: first, generate a texture so that the texel size
approximately corresponds to the side length of a voxel, and
the extents of the texture are slightly larger than the poly-
gon in order to ensure that all texels needed for rasterization
are present, even when bilinear texture filtering is used. This
texture is then sampled in voxel space by searching for every
texel center the n closest voxel centers and average the cor-
responding color values according to distance. For texels ly-
ing completely inside the polygon, it is sufficient to consider
only the voxels stored with the polygon, while for texels at
the border or outside the polygon, the whole voxel field has
to be searched. Applying oversampling (i.e., setting n > 1)
results in smoother, but also somewhat blurrier textures.

After all textures are generated, they can be stored using a
texture atlas as presented by Cignoni et al.3, in order to mini-
mize state-changing overhead during rendering and to make
more efficient use of texture memory. As already noted by
Darsa et al.5, perspective correction for those textures should
be disabled during rasterization, since perspective is already
recorded in the texture.

8. Reprojecting the mesh into world space

The final step is to reproject the vertices of the simplified
and texture-mapped mesh to their correct positions in world

c© The Eurographics Association 2002.



Jeschke and Wimmer / Textured Depth Meshes

space. Since no new vertices were introduced during simpli-
fication, all vertices still lie within one of the sampling lay-
ers. The formulas to reproject a vertex from uniform voxel
space vv to world space vw are therefore:

lz = layer[vv
z · smax],

vw
x = 2 · lz · tan(

FOV
2

) · (vv
x · smax

RESx
− 1

2
),

vw
y = 2 · lz · tan(

FOV
2

) · (vv
y · smax

RESy
− 1

2
),

vw
z = lz,

where RESx and RESy are the resolutions of the sampling
layer in x and y, and layer[i] is the distance of layer i from
the reference viewpoint in world space.

9. Results and discussion

The algorithms presented in this paper were implemented
and tested on a standard PC with an Athlon 1800+ processor,
1 GB of main memory and a GeForce3 Ti 500 graphics card.

To demonstrate the wide variety of possible usages of the
approach, two very different models have been chosen for
testing: first, a wide urban environment (a model of the Aztec
city of Tenochtitlan, which is freely available on the inter-
net), and second, a single, relatively small object (a car),
using exactly the same algorithm for both models. The re-
sulting model statistics are shown in table 1.

Model Tenochtitlan Car

Polygon count of the model 158944 1188

Size of the model 450x450x50m 4.7x1.8x1.5m

Size of (cubic) view cell 42m 63m

Distance view cell to model 487m 73m

No. of generated meshes 12 2

Polygons in initial meshes 637462 83481

Polygon count of TDMs 946 220

Processing time 1.5 min 5 sec

Table 1: Model statistics.

The urban model includes large occluded scene parts,
which are automatically recognized and excluded by the al-
gorithm (see figure 16). On the other hand, the method guar-
antees that all visible scene parts are represented, so that no
rubber-sheet effects or image cracks appear. While degener-
ate meshes can occur under rare circumstances, the quality
of the output meshes is usually very high: they follow quite
precisely the shape of the objects to be represented, even

when relaxing the parameter for mesh simplification, as can
be seen for the car model in figure 17 (a factor of 2 was used
to enlarge the voxel size for both test scenes).

Due to the special layer arrangement, all scene parts are
recorded with the proper resolution, which also helps to
avoid temporal aliasing (i.e., flickering). The effect of over-
sampling the impostor textures can be observed in figure 15,
where the result looks smooth, but also a bit blurred.

Although the number of polygons in the intermediate
mesh representation may seem high, this is mainly because
of the number of pixels on screen and not because of the
complexity of the original scene, thanks to visibility pro-
cessing, and it is unlikely that polygon counts will grow
much beyond what can be seen here. Taking into account
that the method is very general and can handle arbitrary in-
put meshes, we consider the processing times reasonable,
and we are optimistic that several time-consuming stages can
still be accelerated significantly.

Note that although the images show only the resulting im-
postors, typical usage scenarios would integrate TDMs for
mid-range to distant objects with standard polygonal ren-
dering for the near field. This allows most of the available
polygon budget to be spent on the areas where it is needed
most, i.e., on a very detailed representation of special ef-
fects, nearby static objects and moving characters, while at
the same time, far objects are still rendered with high fidelity
and the minimum amount of polygons necessary. Through
mesh simplification, view cells can be made much larger
than if using layered impostors8 alone, and fewer view cells
are needed. Savings in rendering time stem not only from
the significant reduction in polygon count for objects repre-
sented by TDMs (see table 1), but also from the simplicity
of the representation: no state changes are necessary when
rendering TDMs, allowing graphics hardware to be utilized
to its fullest potential.

10. Conclusions

This paper introduced a novel approach to generate textured
depth meshes in order to accelerate the rendering of very
complex, arbitrary geometric models. The contribution of
the approach is manifold:

It generates high-quality textured depth meshes of arbi-
trary scenes, which are practically indistinguishable from
the original rendered models when seen from a fixed view-
ing region. A single parameter is provided for controlling
the tradeoff between mesh complexity and accuracy during
the simplification algorithm. The sampling layers are opti-
mally placed, so that the parallax error remains bounded. Be-
cause of this, no image cracks or rubber-sheet effects due to
missing information about hidden parts of the scene appear.
Moreover, only potentially visible parts of the scene are rep-
resented in the TDM, thus minimizing the storage cost of the
impostor representation.

c© The Eurographics Association 2002.



Jeschke and Wimmer / Textured Depth Meshes

In contrast to the authors’ previous approach, which pro-
duces disconnected impostor layers, the complexity of the
new impostor representation is completely decoupled from
the number of layers used to create it, and therefore also al-
lows a reduction of polygon counts and texture memory re-
quirements for scene parts near the viewer, albeit at the cost
of longer preprocessing times.

By accelerating the rendering of distant geometry, the
method is well suited to allow larger environments to be dis-
played in real time, and also frees up enough rendering ca-
pacity so that nearby objects can be rendered in more detail.
It also compares favorably to using LOD rendering for dis-
tant geometry, since it allows arbitrary parts of a scene to be
simplified, regardless of their extent (scenes may extend to
infinity), topology, connectedness, or rendering method, and
it automatically handles only visible geometry.

In terms of future research, we plan to integrate the al-
gorithm into a real-time rendering system. Here, the selec-
tion of view cells and objects to be represented by TDMs
will be a major issue to be tackled. Further, we will try to
improve the versatility of our representation by combining
the meshes with normal maps to better exploit the multi-
texturing capabilities of today’s hardware, and allow for
dynamic lighting effects—to date absent in most impostor
representations. Also, multitexturing could be used for en-
hanced filtering of different positions inside the view cell as
demonstrated for point-based impostors19.

Acknowledgements

This work was supported by the German Research Founda-
tion (DFG) in the frame of the postgraduate program “pro-
cessing, administrating, visualization and transfer of multi-
media data—technical basics and social implications”, and
the Austrian Science Fund (FWF) contract no. P13867-INF.

References

1. D. Aliaga, J. Cohen, A. Wilson, E. Baker, H. Zhang, C. Erik-
son, K. Hoff, T. Hudson, W. Stürzlinger, R. Bastos, M. Whit-
ton, F. Brooks, and D. Manocha. MMR: An interactive mas-
sive model rendering system using geometric and image-based
acceleration. In 1999 Symposium on interactive 3D Graphics,
pages 199–206, 1999. 1, 2

2. S. Chen. QuickTime VR – an image-based approach to vir-
tual environment navigation. In SIGGRAPH 95 Conference
Proceedings, pages 29–38, 1995. 1, 2

3. P. Cignoni, C. Montani, C. Rocchini, and R. Scopigno. A
general method for preserving attribute values on simplied
meshes. In Proceedings IEEE Visualization’98, pages 59–66,
1998. 8

4. J. Cohen, A. Varshney, D. Manocha, G. Turk, H. Weber,
P. Agarwal, F. Brooks, and W. Wright. Simplification en-
velopes. In SIGGRAPH 96 Conference Proceedings, Annual
Conference Series, pages 119–128, 1996. 7

5. L. Darsa, B. Costa Silva, and A. Varshney. Navigating static
environments using image-space simplification and morphing.
In 1997 Symposium on Interactive 3D Graphics, pages 25–34,
1997. 2, 8

6. X. Decoret, F. Sillion, G. Schaufler, and J. Dorsey. Multi-
layered impostors for accelerated rendering. Computer Graph-
ics Forum, 18(3):61–73, 1999. 2

7. M. Garland and S. Heckbert. Surface simplification using
quadric error metrics. In SIGGRAPH 97 Conference Proceed-
ings, Annual Conference Series, pages 209–216, 1997. 7

8. S. Jeschke and M. Wimmer. Layered environment-map impos-
tors for arbitrary scenes. In Graphics Interface 2002. Canadian
Information Processing Society, Canadian Human-Computer
Communications Society, May 2002. 2, 4, 9

9. Marc Levoy and Pat Hanrahan. Light field rendering. In SIG-
GRAPH 96 Conference Proceedings, pages 31–42, 1996. 2

10. P. Maciel and P. Shirley. Visual navigation of large environ-
ments using textured clusters. In 1995 Symposium on Interac-
tive 3-D Graphics, pages 95–102, 1995. 1, 2

11. W. Mark, L. McMillan, and G. Bishop. Post-rendering 3D
warping. In 1997 Symposium on Interactive 3D Graphics,
pages 7–16, 1997. 2

12. N. Max and K. Ohsaki. Rendering trees from precomputed
Z-buffer views. In Rendering Techniques ’95, pages 74–81,
1995. 2

13. E. Puppo and R. Scopigno. Simplification, lod and multireso-
lution - principles and applications. In Eurographics’97 Tuto-
rial Notes PS97 TN4, pages 31–42, 1997. 1, 7

14. G. Schaufler. Per-object image warping with layered impos-
tors. In Rendering Techniques ’98, pages 145–156, 1998. 1,
2

15. G. Schaufler and W. Stürzlinger. A three-dimensional im-
age cache for virtual reality. Computer Graphics Forum,
15(3):227–235, 1996. 2

16. J. Shade, S. Gortler, L. He, and R. Szeliski. Layered depth im-
ages. In SIGGRAPH 98 Conference Proceedings, pages 231–
242, 1998. 1, 2

17. J. Shade, D. Lischinski, D. Salesin, T. DeRose, and J. Sny-
der. Hierarchical image caching for accelerated walkthroughs
of complex environments. In SIGGRAPH 96 Conference Pro-
ceedings, pages 75–82, 1996. 2, 3

18. F. Sillion, G. Drettakis, and B. Bodelet. Efficient impostor ma-
nipulationfor real-time visualization of urban scenery. Com-
puter Graphics Forum, 16(3):207–218, 1997. 1, 2

19. M. Wimmer, P. Wonka, and F. Sillion. Point-based impos-
tors for real-time visualization. In Rendering Techniques 2001,
pages 163–176, 2001. 1, 2, 10

20. P. Wonka, M. Wimmer, and F. X. Sillion. Instant visibility.
Computer Graphics Forum, 20(3):411–421, 2001. 1

c© The Eurographics Association 2002.



Jeschke and Wimmer / Textured Depth Meshes

Figure 15: Left: geometric model consisting of 158944 polygons. On the right, the TDM representation consisting of only 946
polygons in 12 meshes, with the textures 4 times oversampled. Both views are from a viewpoint at the border of the view cell.

Figure 16: Left: the same scene from a bird’s-eye view. Notice that no occluded scene parts are present in the TDM. Right: the
corresponding mesh.

Figure 17: Top left: close up of the original car rendered using geometry (1188 polygons). Top right: close up of the TDM,
containing 220 polygons and non-oversampled textures. The bottom-left figure shows the mesh of the TDM. To the bottom right,
the proportion between the car and the associated view cell is shown (both are seen from the side).

c© The Eurographics Association 2002.


