
Eurographics Symposium on Rendering 2003
Per Christensen and Daniel Cohen-Or (Editors)

Rendering Time Estimation for Real-Time Rendering

Michael Wimmer† and Peter Wonka‡

†Vienna University of Technology, Vienna, Austria
‡Georgia Institute of Technology, Atlanta, USA

Abstract
This paper addresses the problem of estimating the rendering time for a real-time simulation. We study different
factors that contribute to the rendering time in order to develop a framework for rendering time estimation. Given
a viewpoint (or view cell) and a list of potentially visible objects, we propose several algorithms that can give
reasonable upper limits for the rendering time on consumer hardware. This paper also discusses several imple-
mentation issues and design choices that are necessary to make the rendering time predictable. Finally, we lay
out two extensions to current rendering hardware which would allow implementing a system with constant frame
rates.

Categories and Subject Descriptors (according to ACM CCS): J.7.6 [Computer Applications]: Real time I.3.1 [Com-
puter Graphics]: Hardware Architecture I.3.3 [Computer Graphics]: Picture/Image Generation - Display algo-
rithms I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism - Virtual reality

1. Introduction

The quality of a real-time rendering application is deter-
mined by several aspects, including impressive models, vi-
sually attractive effects like shadows, reflections and shad-
ing, etc. In this paper we take a look at another component
that largely contributes to high-quality graphics simulation
as sought for in computer games, trade shows, and driving
simulators. It is a factor that has often been overlooked in
current products: fluent and continuous motion. For the im-
pression of fluent motion, it is necessary to render at a fixed
high frame-rate, mainly determined by the refresh rate of the
display device (typically 60 Hz or more). Failing to do so
results in distracting and visually displeasing artifacts like
ghosting (Figure 7) and jerks7. Furthermore, the predictabil-
ity of frame times is crucial for the ability to schedule certain
events and to coordinate input with simulation and display.
Especially due to the use of hardware command buffers, the
time span between the issuing of a rendering command and
its actual execution can easily be over one frame. If the ren-
dering time of the frame is not known in advance and frame
times have a high variance, the apparent moving speed will
change constantly (see Figure 6). This is most visible when
the viewer is rotating.

To obtain a system with a fixed frame rate, it is neces-
sary to guarantee that the rendering time does not exceed a

certain time limit. One building block of such a system is
a prediction of the rendering time for a given frame. While
previous work5, 1 showed how to build a real-time rendering
system with guaranteed frame rates when such a prediction
function is given, the actual prediction function used for the
rendering time estimation should be studied in greater detail.

In this paper, we undertake a more in-depth study of ren-
dering time in order to show which simple heuristics can be
used for this purpose and how successful they are. Among
others, we present an approach based on sampling rendering
times, and an improved mathematical heuristics based on a
cost function. An important part of this work is the proposal
of two hardware extensions—a time-stamping function and
a conditional branch mechanism—which make rendering
time estimations more robust. We show how to implement a
soft real-time system providing fixed frame rates using these
extensions. We also skirt practical issues and design choices
encountered when implementing a real-time rendering sys-
tem, and give hints and examples for those. In the long run,
we aim to use the results of this paper to construct a soft
real-time system with bounded frame times. Rendering time
estimation can also be used to calculate efficient placement
of impostors in complex scenes.

First, we set out by defining the rendering time function.

c© The Eurographics Association 2003.



Wimmer and Wonka / Rendering Time Estimation for Real-Time Rendering

As the most general form we propose

t = RT (SG,RA,HW,ST ),

where SG is a scene graph, RA is the rendering action used
for traversal, HW is the hardware, and ST is the current state
of the hardware, software and the operating system. While
this form is general enough to incorporate all important ef-
fects that influence the rendering time, it is complicated to
use in practice. Therefore, we will use a simpler form, where
the scene graph is an ordered set of objects X = (x1, ...,xn),
with given geometry and attributes xi = (gi,ai). Further-
more, we assume that the rendering action is implicitly de-
fined by the attributes of the objects. We thus obtain the fol-
lowing form:

t = RT (X,HW,ST )

This formulation of the rendering time function is the ba-
sis for the framework which we will use to discuss different
aspects of the rendering time estimation problem.

The rest of the paper is organized as follows. Section 3 ex-
plains the functionality of current rendering hardware, sec-
tion 4 describes our framework to estimate rendering time
and explains the different tasks and factors that contribute to
the rendering time and how to estimate them. In section 5 we
describe the crucial parts of the rendering time estimation in
greater detail, and in section 6 we propose two hardware ex-
tensions necessary for a soft real-time system. Sections 2, 7
and 8 present previous work, results and conclusions.

2. Previous Work

Funkhouser and Séquin5 demonstrate a real-time rendering
system that bounds frame times through appropriate level-
of-detail (LOD) selection. They assign a cost and a benefit
to each LOD for each object. The optimization tries to se-
lect for each object such a LOD that the sum of the benefit
values is maximized, given a maximum allowable cost. The
cost metric used is equivalent to the following rendering time
estimation:

RT (x) = max(c1 ∗#polys(x)+ c2 ∗#v(x),c3 ∗#pix(x))

where x is the LOD in consideration, #polys is the num-
ber of polygons and #v is the number of vertices of the ob-
ject, and #pix is the number of pixels in the projection. The
parameters c1, c2 and c3 are constants that are determined
experimentally by rendering several sample objects.

While vertex and polygon counts are both reasonable es-
timates for geometric complexity, a better match for the way
modern GPUs actually behave is the number of actually
transformed vertices, i.e., the number of vertices that are
not taken from the post-transform vertex cache used by such
GPUs, but actually fetched and transformed. Hoppe uses this
number as a basis for a cost function used for the creation of

1

2

3

4

5

6

1 2 3 4 5 6 1 3 5-

indexed triangle strip

Figure 1: This figure illustrates different attributes of an in-
dexed triangle strip. The strip consists of 6 indices, then a
restart denoted by - and three more vertices. The number
of polygons is 5, the number of indices is 9, the number of
vertices is three times the number of polygons (15) and the
number of actually transformed vertices is 6, i.e., each ver-
tex is only transformed once, as they all fit into the vertex
cache.

efficient triangle strips8. While Hoppe additionally consid-
ers the index transfer for indexed triangle strips, due to the
small size of indices this factor plays only a limited role for
rendering time estimation. See Figure 1 for an illustration of
the different concepts.

Aliaga and Lastra1 construct a view-cell based real-time
rendering system. They sample the view space with a large
number of viewpoints, where each sample viewpoint defines
a view cell around it. For each cell, they select objects for
direct rendering according to a cost-benefit function. The re-
maining objects are replaced by layered depth images. The
cost metric is based on the number of triangles and ignores
the influence of rasterization. The proposed rendering time
estimation is therefore

RT (x) = c1 ∗#tris(x)

where c1 is determined by the triangle rate of the given
hardware. The accuracy of these estimations will be com-
pared with our estimations in section 7.

The problem of maintaining a specified frame rate
has also been addressed in the Performer system13, how-
ever based on a reactive LOD selection system. However,
bounded frame rates can only be guaranteed using a pre-
dictive mechanism. Regan and Pose12 demonstrated a sys-
tem capable of maintaining fixed frame rates with a special-
purpose display controller for head-mounted displays based
on just-in-time image composition.

3. Rendering Hardware Overview

This research focuses on consumer hardware, namely a PC
with a state-of-the-art graphics card (current examples are
NVIDIA’s GeForce or ATI’s Radeon products). Consumer
hardware is not naturally geared towards the construction of

c© The Eurographics Association 2003.



Wimmer and Wonka / Rendering Time Estimation for Real-Time Rendering

CPU
Video memory

Vertex

Fragment

AGP memory

GPU

Graphics cardMainboard

Main memory

Frame buffer

Figure 2: This figure shows an overview of the graphics ar-
chitecture. The arrows indicate the most important flows of
data.

a real-time rendering system, because hardly any tools are
available to give a hard time limit for the execution of a
given set of rendering commands. However, these systems
are very wide spread and used by many interactive render-
ing applications. Therefore, it seems worthwhile to provide
a best-effort estimation of the execution time, knowing that
a hard real-time rendering system cannot be achieved. So we
aim at the construction of a soft real-time rendering system
working with statistical guarantees for the rendering time.

In the following we give a functional overview of the ren-
dering system (see Figure 2). The rendering process uses the
CPU and the GPU in parallel. The application is executed
on the CPU and sends commands to the GPU via the graph-
ics driver. We will use a typical frame of a simple render-
ing engine to illustrate this functionality (see also Figure 4).
On the CPU side, the application issues a clear screen (clr)
command to initialize the frame buffer. Then the application
traverses all objects xi = (gi,ai). For each object, the appli-
cation has to set the state of the graphics hardware accord-
ing to the attributes ai and then send the geometry gi. The
driver sends the commands to a command buffer (FIFO).
The GPU reads commands from this buffer and executes
them. State commands change the state of the pipeline ac-
cording to the attributes of the primitives. Geometry is sent
down the pipeline starting with the vertex processing unit,
after which it is rasterized into fragments that in turn go to
the fragment processing unit. The primitives, mainly indexed
triangle strips, consist of vertex data and index data. For ef-
ficiency, both vertex and index data are either stored in AGP
memory or in video (=graphics card) memory, both of which
are directly accessible by the GPU.

4. The rendering time estimation framework

In this section we will propose a framework for analyzing
the rendering time. The main idea is to assume a subdivi-

sion of the rendering process into a number of conceptually
independent tasks which can be estimated separately. The
remaining interdependencies that are not captured by our
model can usually be subsumed under a so-called system
task. Note that the test system used to obtain the empirical
results shown in this section is described in section 7.

4.1. The refined rendering time estimation function

The refined rendering time estimation function RT which is
used for the discussion in this section is made up of estima-
tions ET for four major components (tasks),

• system tasks (ETsystem),
• CPU tasks (ETCPU )
• idle time (ETCPU

idle ,ETGPU
idle ), and

• GPU tasks (ETGPU ),

in the following way:

RT = ETsystem +max(ETCPU ,ETGPU )

with

ETCPU = ETCPU
nr +ETCPU

r +ETCPU
mm +ETCPU

idle

and

ETGPU = ETGPU
f s +ETGPU

r +ETGPU
mm +ETGPU

idle .

Here, the indices nr denote non-rendering code, f s frame
setup, r rendering code, mm memory management, and idle
is idle time.

4.2. System tasks

The operating system and other applications use time for
tasks like network services, indexing services, file system,
memory managers etc., some of which cannot be totally
eliminated even during the execution of a higher-priority
process. Further, the graphics driver itself might schedule
certain tasks like optimization routines, which are not doc-
umented and cannot be predicted. This time is denoted as
ETsystem in our framework, and is the main reason for varia-
tions in frame times for a single view.

To understand its influence on the rendering time, we con-
ducted the following experiment. In a test scene we selected
a number of individual viewpoints and measured the render-
ing time for 10,000 subsequent renderings for each view-
point. All non-critical services were turned off (including
indexing and other applications with file access), and the
rendering thread was set to a higher priority, thus basically
eliminating all non-critical operating system activity. Syn-
chronization with the vertical retrace was also turned off in
order to eliminate any dependency on the physical display
device. We expected the rendering time variations to resem-
ble a lognormal distribution, which would be typical for a

c© The Eurographics Association 2003.



Wimmer and Wonka / Rendering Time Estimation for Real-Time Rendering

0

0,5

1

1,5

2

2,5

3

3,5

4

11
,8

11
,8

8

11
,9

6

12
,0

4

12
,1

2
12

,2

12
,2

8

12
,3

6

12
,4

4

12
,5

2
12

,6

12
,6

8

12
,7

6

12
,8

4

12
,9

2 13

13
,0

8

13
,1

6

13
,2

4

13
,3

2
13

,4

13
,4

8

13
,5

6

13
,6

4

13
,7

2
13

,8

13
,8

8

13
,9

6

empirical
density
function

ms

1/ms

Figure 3: This graph shows an example for an empiri-
cal density function of the rendering time derived through
10,000 renderings from the same viewpoint.

process involving completion times (this has been observed,
for example, in quality control engineering and traffic flow
theory6). However, there are variations that follow a quite
peculiar pattern. Figure 3 shows the empirical probability
density function for one of the chosen viewpoints. It does
not resemble any of the well-known distribution function.

One option is to assume that the variation of this distribu-
tion represents the influence of system tasks. For example,
the bimodal nature of the distribution suggests that there is
a regular system task (e.g., the thread scheduler, related to
the thread quantum) which is executed approximately every
2 to 3 frames and takes about 0.5 ms. The variation of the
distribution also depends on the total execution time of the
frame. Since we aim for a system with fixed frame times,
we estimate the time of the system tasks as a constant c rep-
resenting the maximum deviation of the minimum render-
ing time for a given confidence interval and target rendering
time: ETsystem,con f idence = c. The constant c is determined by
calculating the width of the given confidence interval with
respect to the empirical probability distribution function of a
test measurement. Although the distribution can vary greatly
near the mean value, we found the extremal values and there-
fore the estimated constant to be quite consistent. For our test
system, we used a confidence interval of 99%, from which
we calculated c as 1.52ms.

4.3. CPU tasks

The CPU is responsible for several tasks. First, there is
application code that does not directly contribute to ren-
dering, like artificial intelligence, animation, collision de-
tection, sound and networking (ETCPU

nr ). Second, there are
rendering-related tasks like scene-graph traversal, view-
frustum culling and dynamic state sorting (ETCPU

r ). Third,
there are issues of memory management like the recalcula-
tion of dynamic vertex data and texture downloads (ETCPU

mm ).

Fourth, there is the idle time when the GPU is too busy to ac-
cept further commands (ETCPU

idle ).

4.3.1. CPU memory management

Texture memory management. If not all textures for a
given scene fit into video memory (and can therefore not be
downloaded before rendering), a memory management rou-
tine is required which selects for each frame which textures
need to be downloaded. For efficiency reasons2 and for pre-
dictability, this should not be left to the graphics driver. The
texture management time ETCPU

mm,tex is given by the sum of
download times for all textures selected for download for a
given frame.

Geometry memory management. Similarly, static ge-
ometry needs to be managed by a geometry management
routine if not all the static geometry in a scene fits into mem-
ory directly accessible by the GPU (video memory and AGP
memory). The geometry management time is ETCPU

mm,geom =
c ∗ g, where g is the amount of memory for the geometry
scheduled for download in the current frame, and c is the
memory copying speed. In the case of indexed geometry,
indices are transferred either during the API call (in unex-
tended OpenGL) or are managed together with the vertex
data. Dynamic geometry, i.e. animated meshes where vertex
positions change, should be written directly to AGP memory
upon generation in order to avoid double copies. For a com-
parison of geometry download methods and their influence
on the rendering time see also section 4.5.3.

4.4. Idle time

Ideally, CPU and GPU run in parallel. However, sometimes
either the CPU or the GPU sits idle while waiting for the
other part to supply data or complete a task. This (unde-
sirable) time is called idle time and occurs in the graph-
ics driver, which runs as a part of the user application on
the CPU. The issue of idle time arises when the graphics
driver writes commands for the graphics card to the com-
mand buffer and this buffer is either full or empty:

• When the buffer is full, the driver blocks the application
and returns only when the buffer can be accessed again.
This usually means that the CPU is supplying graphics
commands fast enough and could be used to do more com-
plex non-rendering calculations.

• When the buffer is empty, the GPU is starved for render-
ing commands (this situation is therefore also known as
back-end starvation). The CPU is not supplying graph-
ics commands fast enough and the GPU sits idle, leaving
some of its potential unused.

A rendering application which makes best use of the avail-
able graphics hardware should strive for maximum paral-
lelism and avoid backend starvation (so that ETGPU

idle = 0).
If this cannot be achieved because the non-rendering code

c© The Eurographics Association 2003.



Wimmer and Wonka / Rendering Time Estimation for Real-Time Rendering

is causing the starvation and cannot be optimized, the un-
used time in the GPU can still be used to execute more com-
plex shaders or draw more complex geometry without af-
fecting the rendering time. In the following, we therefore
assume a balanced system, where the GPU is always busy
(ETGPU

idle = 0) and the CPU might be occasionally idle. In our
current implementation, the engine performs non-rendering
code for the next frame when the GPU is still busy drawing
the current frame. This is illustrated in Figure 4.

Note that some graphics commands require other buffers
apart from the command buffer which can also become
full and lead to idle time. The most important example are
immediate-mode geometry commands in OpenGL, where
the driver accumulates vertices in AGP or video memory
buffers. These buffers are however usually quite small, so
that the driver has to stall the CPU on most rendering com-
mands and practically all parallelism between CPU and GPU
is lost. Note that these commands are also undesirable be-
cause of the overhead imposed by the large number of API
calls required. Geometry should therefore only be trans-
ferred under application control using extensions4, 10, which
also has the advantage that static geometry need not be sent
every frame (see section 4.3.1).

4.5. GPU tasks

The rendering tasks on the GPU typically constitute the most
important factors for the rendering time. We can identify the
following tasks11:

Per-frame calculations. At the beginning of each frame,
the frame buffer has to be cleared, and at the end of each
frame, the back buffer has to be swapped with the front
buffer. In a real-time setting, the swap should be synchro-
nized with the vertical retrace of the screen in order to avoid
tearing artifacts. While actual buffer swap times are negli-
gible, clear times and buffer copy times (for windowed ap-
plications where buffer swapping is not possible) need to be
taken into account in the estimation.

Per-primitive-group calculations. State setup including
texture bind, material setup, vertex and fragment shader bind
and shader parameters. The speed of this stage is determined
by the number and type of state changes in a frame (with
changes in vertex and fragment programs usually being the
most expensive, followed by texture changes).

Per-primitive calculations are not fully developed in
current graphics hardware. One example on current hard-
ware is the adaptive refinement of triangles based on vertex
normals9.

Per-vertex calculations can be further broken down into
index lookup (if an indexed rendering primitive is used)
vertex fetching from video or AGP memory, and execution
of the vertex shader. The time spent for these calculations
is determined by the complexity of the vertex shader and

the number of actually transformed vertices (see section 2),
which can be determined by doing a FIFO-cache simulation
for the geometry to be estimated. Note that one way to min-
imize the number of actually transformed vertices needed
for a given geometry is to use a vertex-cache aware triangle
stripper3. Note also that the vertex cache can only work for
indexed primitives and when geometry is stored in AGP or
video memory, therefore non-indexed primitives should only
be used for geometry containing no shared vertices.

Triangle setup is the interface between per-vertex and
per-fragment calculations. Triangle setup is usually not a
bottleneck in current GPUs.

Per-fragment calculations or rasterization. These cal-
culations are done by the fragment shader and subsequent
stages. Examples include texture mapping, multi-texturing,
environment mapping, shadow mapping etc. The speed of
this stage is determined by the complexity of the fragment
shader, but also by the efficiency of early fragment z-tests
present in newer cards, and texture memory coherence.

In the following, we discuss some other factors influenc-
ing rendering time, including bottlenecks, rendering order
and the type of memory used.

4.5.1. The myth of the single bottleneck in an
application

A common misunderstanding with regard to the rendering
pipeline is that the speed of an application is defined by a
single bottleneck. While this is true for each particular point
in time, the bottleneck can change several times even during
the rendering of one single object. Due to the small size of
post-transform vertex caches, the fragment and the geome-
try stage can work in parallel only for one particular triangle
size, which depends on the complexity of the vertex and the
fragment shader. Triangles larger than this “optimal trian-
gle” usually stall the pipeline, whereas smaller triangles will
cause the fragment stage to sit idle.

While for some far-away objects the rendering time is de-
termined only by the geometry stage, most objects consist
of several triangles larger than the optimal triangle and sev-
eral ones that are smaller. An example is shown in Table 1,
where neither vertex nor fragment shader can be made more
complex for free (as should be the case for a single bot-
tleneck). This effect needs to be incorporated in rendering
time estimation heuristics. Our results indicate that a sum
of fragment- and geometry terms might be better suited to
estimate rendering time than taking the maximum of such
terms5. A new heuristic based on this observation is intro-
duced in section 5.3.

4.5.2. Rendering order

The rendering order can influence rendering time in two
ways: First by the number of state changes required, which
suggests that objects should be sorted by their rendering

c© The Eurographics Association 2003.



Wimmer and Wonka / Rendering Time Estimation for Real-Time Rendering

clr a1
g1 an

gn swp prepare vp(i+1)
CPU

GPU

GPU frame vp(i)

clr a1
g1 an swpgn

clr a1
g1

vertical
retrace

get vp(i+1)render vp(i)render vp(i) render vp(i+1)

render vp(i)

swp

clr a1
g1

vertical
retrace

render vp(i+1)

Figure 4: This figure shows how CPU and GPU work in parallel. When the GPU starts rendering the current frame (vp(i)),
the CPU has already written most of the rendering commands for this frame to the command buffer. When the CPU is finished
with the current frame, it can prepare the next frame (vp(i+1)), starting with CPU-intensive non-rendering tasks and memory
management, while the GPU is still busy rendering the current frame.

simple pixel complex pixel difference

simple vertex 4.969 7.35 2.381

complex vertex 9.859 11.856 1.997

difference 4.89 4.506

Table 1: This table shows the rendering time for one view-
point in the terrain scene. If the complexity of the vertex
shader is increased, the rendering time increases (indepen-
dent of the fragment shader complexity). If the complexity
of the fragment shader is increased the rendering time in-
creases as well (independent of the vertex shader complex-
ity). This shows the lack of parallelism between the fragment
and geometry stages.

modes. Second by the effect of pixel occlusion culling,
which suggests that geometry should be rendered front to
back in order to reduce the amount of fragments that actu-
ally need to be shaded.

Table 2 illustrates that mode sorting improves rendering
time especially in CPU-limited cases because state changes
are CPU intensive. The other test scenes do not profit from
mode sorting because they either contain no state changes
(terrain scene), or for other reasons (forest scene, no im-
provement although 194 state changes are reduced to 2), in
which case dynamic mode sorting even increases rendering
time.

Table 3 shows the effect of distance sorting in a strongly
fill-limited setting, as compared to normal rendering (no
sorting).

4.5.3. GPU memory management

There are several possible choices in which to send ge-
ometry to the graphics hardware, including whether to use

Sort order: no sort matrix/ texture/ presorted
texture matrix text./mat.

texture changes 984 449 211 211

material changes 639 525 110 110

alpha changes 186 28 12 12

cpu limited:

GPU time in ms 9.188 7.725 8.539 7.07

geometry limited:

GPU time in ms 14.634 14.328 14.138 14.138

Table 2: Examples for mode sorting in the city test scene in
a CPU-limited and a geometry-limited setting (with a more
complex vertex shader). The column headers indicate the
sort order used (e.g., in the second column, first by transfor-
mation matrix, then by texture). In the presorted case, there
is no CPU overhead.

normal f2b b2f

GPU time in ms 10.7 9.143 12.552

Table 3: Distance sorting (front-to-back and back-to-front)
in the city scene in a fill-limited setting.

indexed or non-indexed primitives, which type of mem-
ory to use (AGP or video), which memory layout to use
(interleaved/non-interleaved vertex formats) and which rou-
tine to use for the memory copy. The graphics hardware and
the driver are usually poorly documented and the optimal
choice can only be found by intensive testing.

The fastest type of memory is generally video memory,
but it only comes in limited quantities, and streaming ge-

c© The Eurographics Association 2003.



Wimmer and Wonka / Rendering Time Estimation for Real-Time Rendering

rendering copying
[ms] [tv/sec] [ms] [MB/sec]

Test1: terrain video memory

independent 4.36 19.73 1.7 793

parallel 4.59 18.75 1.9 733

Test2: terrain AGP memory

independent 4.95 17.38 1.4 952

parallel 6.27 13.72 3.3 420

Test3: terrain AGP memory, interleaved

interleaved AGP

independent 4.41 19.52 1.4 952

parallel 5.04 17.06 2.9 481

Test4: city video memory CPU limited

independent 9.28 11.878 4.1 793

parallel 14.167 7.78 5.1 644

Table 4: The table shows rendering and memory copy times
in two cases: independent shows the times for rendering and
copying alone; parallel shows the slowdown when render-
ing and copying are done concurrently and compete for the
same memory (tv/sec are the actually transformed vertices
per second).

ometry directly into video memory during rendering might
reduce bandwidth for texture accesses. Table 4 shows that
rendering from and copying to video memory can be done in
parallel without the two influencing each other significantly.
This means that geometry downloads to video memory don’t
increase the overall rendering time if there is enough CPU
time left. However, when rendering is already CPU limited
(Test4), the total rendering time increases by the full time
needed for the copy. Therefore, dynamic geometry transfers
should be avoided in this case and as much geometry as pos-
sible stored statically in video memory. Test2 shows that in
the case of simple vertex shaders, using AGP memory can
slow down the GPU due to the limited bandwidth of the AGP
bus, especially when geometry is also copied to AGP mem-
ory in parallel. This has to be considered when working with
animated meshes. An interesting observation (Test3) is that
the geometry layout can influence the rendering speed so that
terrain rendering with interleaved geometry from AGP mem-
ory is almost as fast as rendering from video memory. Note
also that these results are close to the maximum transforma-
tion capability of the used rendering hardware.

5. Methods for rendering time estimation

In this section, we give several heuristics which can be used
to calculate the rendering time estimation function. These
heuristics are then compared and evaluated in section 7.

To obtain an estimation for the rendering time, we have
to choose a method in a spectrum that is spanned by the
extremes of measuring and calculating. We propose three
basic methods: one sampling method that is mainly defined
by measurements (and gives RT directly), another hybrid
method that is a tradeoff between sampling and heuristic
calculations and a third method that uses a heuristic function
based on the number of the actually transformed vertices and
rendered pixels (the latter two methods estimate ETGPU

r , i.e.,
the other terms of RT have to be estimated separately as de-
scribed in section 4).

5.1. View-cell sampling

The proposed sampling method works for a view-cell based
system, where a potentially visible set (PVS) is stored for
each view cell. For each view cell we discretize the set of
view directions, randomly generate n views around each dis-
cretized direction and measure the rendering time for each
view. The maximum rendering time of the n sample views is
used as an estimation for the total rendering time RT of the
direction and the view cell under consideration.

5.2. Per-object sampling

The hybrid method estimates the rendering time of a set of
objects by adding the rendering time estimations of the in-
dividual objects. The assumption is that when two sets of
objects are rendered in combination (X1 ⊕X2), the render-
ing time is at most linear with respect to the rendering times
of the original sets X1 and X2.

ETGPU
r (X1 ⊕X2) ≤ ETGPU

r (X1)+ETGPU
r (X2)

To estimate the rendering time of a single object, we pa-
rameterize the rendering time estimation function by three
angles ETGPU

r (x) = ETGPU
r (x,α,γ,φ) (see Figure 5 for a 2D

view). The angle α is the angle between the two supporting
lines on the bounding sphere. This angle (which is related
to the solid angle) is an estimate for the size of the screen
projection. The angles γ and φ (for elevation) describe from
which direction the object is viewed. In a preprocess, we
sample this function using a regular sampling scheme and
store the values in a lookup table together with the object.
As the angle α becomes smaller, the rendering time will be
geometry limited and not depend on the viewing parameters
any more. We use this observation to prune unnecessary test
measurements. This rendering time estimation can be used
in two ways:

Per-viewpoint estimation: For an online estimation, the

c© The Eurographics Association 2003.



Wimmer and Wonka / Rendering Time Estimation for Real-Time Rendering

�

�

Figure 5: This figure shows precalculated per-object sam-
pling. The rendering time estimation is parameterized with
three angles, two of those are shown in this 2D figure.

rendering time is looked up in the table stored with the ob-
ject with respect to the current viewpoint and view direction.
Care has to be taken not to make the estimation overly con-
servative: For objects straddling the view frustum, the angle
alpha has to be clipped to the view frustum. This is espe-
cially important for nearby objects since they tend to cover
a larger screen area, i.e., they usually contain several large
rasterization-limited triangles which add significantly to the
estimated time.

Per-view-cell estimation: For a view cell, the rendering
time estimation is more involved. As in view-cell sampling
(section 5.1), we discretize the set of possible viewing direc-
tions from a view cell. For each discretized direction, a con-
servative estimate of the rendering time is calculated sepa-
rately in the following way: We seek for each object the point
on the view-cell boundary where the object bounding sphere
appears largest in the viewing frustum. This point lies either
on a boundary vertex of the view cell, or on a boundary face
such that the view frustum given by the viewing direction is
tangent on the object bounding sphere. The rendering time
estimation associated with this point is then looked up as
in the per-viewpoint estimation, and added to the estimated
rendering time for this viewing direction. Finally, the ren-
dering time estimation for the whole view cell is calculated
as the maximum of the rendering time estimations from the
discretized viewing directions.

5.3. Mathematical heuristics

As the last model, we compare several mathematical heuris-
tics for the rendering time estimation ETGPU

r . Note that in
previous work, the first 3 heuristics shown here were used
alone, without regard for the other components of RT de-
scribed in this paper. We propose to the presented heuristics
within the complete rendering time estimation framework,
which allows taking into account effects like texture and ge-
ometry management etc.

The first heuristic H1 is the triangle count1. The assump-
tion on which this heuristic is based is that the ratio of ac-
tually transformed vertices to triangles is uniform over the
whole scene, and that the rendering time is determined by
the geometry stage.

ETGPU
r (x) = c∗#tris

where #tris is the triangle count of an object, and c is the
triangle rate for a given hardware.

The second heuristic H2 is the actually transformed vertex
count8.

ETGPU
r (x) = c∗ tv

where tv is the number of actually transformed vertices
and c is the vertex rate for a given hardware. This heuristic
reflects the geometry processing stage more accurately than
H1, but still neglects the influence of rasterization on render-
ing time.

A more complete heuristic (H3) is Funkhouser’s cost
function5 with

ETGPU
r (x) = max(c1 ∗#polys(x)+ c2 ∗#v(x),c3 ∗#pix(x))

where x is the object under consideration, #polys is the
number of polygons of the object, #v is the number of ver-
tices of the object and #pix is the number of pixels in the
projection.

As was discussed in section 4.5.1, the bottleneck in a ren-
dering pipeline can shift several times even when rendering
a single object. The maximum of geometry and rasterization
terms as used in H3 is actually a lower bound for the actual
rendering time, whereas the sum of the two terms constitutes
the upper bound, and is therefore a more conservative esti-
mation. The experiments in section 4.5.1 also suggest that
in practice, the actual rendering time often tends towards
the sum. Furthermore, the factor which determines geometry
transformation time is the number of actually transformed
vertices and not just the number of vertices or polygons.
Based on these two observations, we propose a new render-
ing time estimation heuristic H4 which improves upon the
previous ones:

ETGPU
r (x) = c1 ∗#tv(x)+ c2 ∗#pix(x)

The heuristics presented here will be compared in sec-
tion 7. However, none of the rendering time estimation func-
tions shown in this section is sufficient to build a soft real-
time system, either because timing results are not accurate
enough with current timing methods (for the sampling ap-
proaches) or because estimated rendering times can some-
times be exceeded in practice even if the prediction is very

c© The Eurographics Association 2003.



Wimmer and Wonka / Rendering Time Estimation for Real-Time Rendering

accurate (for the mathematical heuristics). In the next sec-
tion, we will propose hardware extensions to overcome these
problems.

6. Hardware extensions for a soft real-time system

In this section, we introduce two hardware extensions that
make it possible to implement a soft real-time system. The
extensions deal with two problems encountered when using
rendering time estimation: the timing accuracy problem and
the estimation accuracy problem.

6.1. The timing accuracy problem

All the heuristics presented in section 5—especially the per-
object sampling method—rely to some extent on the abil-
ity to measure the rendering time for specific objects. While
it is relatively easy to measure the time taken by a specific
CPU task, it is very difficult to obtain such measurements for
GPU-related tasks. CPUs provide an accurate time-stamping
mechanism via an instruction that returns the current CPU
clock cycle counter. Inserted before and after a number of
instructions, the difference of the counters can be used to
calculate the time required for executing the instructions.

The GPU, however, is a separate processing unit, and any
timing mechanism implemented on the CPU will either give
only information about the interaction with the command
buffer, or include significant overhead if the GPU is explic-
itly synchronized before each timing instruction (e.g., via the
OpenGL command Finish).

6.2. The time-stamping extension

Due to the large uncertainties that such inaccurate timing can
introduce in the rendering time estimation, it seems useful to
implement timing directly on the GPU and to extend current
hardware with a time-stamping function, which can be used
for acquiring the accurate measurements needed to set up the
rendering time estimation functions in section 5 (either for
sampling or for calibrating one of the heuristic formulae).

This function should operate similarly to the OpenGL
occlusion-culling extension: A time-stamp token is inserted
into the command buffer, and when this token is processed
by the GPU, a time stamp representing the current GPU time
(e.g., a GPU clock cycle counter) is stored in some mem-
ory location and can be requested by an asynchronous com-
mand. Due to the long pipelines present in current GPUs,
there are two possible locations for setting the time stamp:
(1) at the beginning of the pipeline (when the token is re-
trieved from the command buffer), and (2) at the end of the
pipeline, which is the more accurate solution. The difference
between two such time stamps can then be used to calculate
the time required for the GPU to render an object much in
the same way as for a CPU to execute some instructions. The
communication paths between the backend of the GPU and

1 2 3 4 5 6 7 8

frame#

v

Figure 6: This diagram shows the strong variations in per-
ceived movement speed during a frame skip (frame 2 is re-
peated).

Refresh Rate = Update Rate

Motion

Refresh Rate = 3 * Update Rate

Motion

Figure 7: Ghosting artifact when the frame rate doesn’t
match the screen refresh rate (recreated after an image from
7). Such artifacts are especially visible on sharp edges in the
images, and when the viewer is rotating.

the CPU necessary for such an extension are already in place
(they are used to transmit pixel counters used in occlusion
queries).

6.3. The estimation accuracy problem

Funkhouser5 notes that for the metric H3, the actual render-
ing time does not deviate more than 10% from the predicted
rendering time in 95% of frames. However, this means that
in a real-time setting assuming a frame rate of 60 Hz, there
would be up to 3 skipped frames per second. Figure 6 shows
the strong variations in perceived movement speed caused
by a single frame skip. In the accompanying video, we show
that even one skipped frame every several seconds is unac-
ceptable if a moderately smooth walkthrough is desired. The
video also shows that switching to a lower frame rate (such
as 30 Hz) for a longer duration is not acceptable either, due
to ghosting artifacts which appear when the frame buffer is
not updated at each screen refresh (see Figure 7).

For a quality real-time application we aim for an estima-
tion accuracy higher than 99.9%, or a maximum of 1-2 frame

c© The Eurographics Association 2003.



Wimmer and Wonka / Rendering Time Estimation for Real-Time Rendering

skips per minute. Even the metric H4 or the per-object sam-
pling method using the time-stamping extension (both intro-
duced in this paper) will not be able to provide such an accu-
rate estimation. We therefore propose a hardware extension
that can “fix” estimation errors during the rendering process.

6.4. The conditional branching extension

We propose using a conditional branch in graphics hardware
to switch to a coarser LOD if the remaining frame time is not
sufficient. Such a conditional branching extension consists
of a start token containing a sequence of numbers tr1 , . . . , trn ,
and a branch token. When the GPU encounters the start to-
ken, it compares each tri with the time remaining until the
next vertical retrace. If tr j is the first number that is smaller
than this time, all commands in the command buffer up to
the j-th encountered branch token are skipped. Then all com-
mands until the next branch token are executed, and finally
all commands until the n-th branch token are skipped again.

The values tri should be set to the result of the rendering
time estimation function for all remaining objects for this
frame, including the current object at a specific level of de-
tail i. Since any tasks done by the driver on the CPU side
will have to be executed for all conditional branches, such
branches should only contain rendering commands which
refer to geometry already stored in AGP or video memory,
which can be accessed by the GPU directly.

6.5. Soft real-time system

Using the two proposed extensions, a soft real-time system
can be implemented. The time-stamping extension guaran-
tees accurate timings for the rendering time estimation func-
tion. Based on this function, appropriate LODs are selected
for each object in each frame in such a way that the total
frame time is not exceeded (there are several ways how to do
that, but the LOD selection process is not topic of this paper).
To guarantee that no frame is skipped even if the rendering
time estimation fails, some objects (starting with those that
(1) are already at a certain distance from the viewer, to re-
duce popping, and (2) still have some geometric complexity
so that their rendering time is not negligible) are accompa-
nied with a small number of coarser LODs, which are auto-
matically selected by the graphics hardware if the remaining
time is not enough to render the predetermined LOD. Note,
however, that such a system is still a soft real-time system
because frame skips can still occasionally occur (e.g., due
to unforeseeable stalls caused by the operating system), but
they will be reduced to a negligible number.

In order to guarantee that no geometry has to be trans-
ferred over the bus for objects that are not actually rendered,
all LODs for all objects could be stored in GPU-accessible
memory at the beginning of the walkthrough, if there is suf-
ficient memory. In general, the geometric data for the LODs

will be managed along with other geometric data as ex-
plained in section 4.3.1. We do not expect the additional data
required by the LODs to be a significant burden on the band-
width between CPU and GPU, since not all LODs for each
object, but only a small number of additional LODs will be
used. In an analogy to mip-mapping, the memory required
for the lower LODs should not exceed the main model—this
holds true for both discrete LODs (where successive levels
should differ by a significant number of triangles) and pro-
gressive LODs (where lower levels are part of the higher lev-
els).

7. Implementation and results

7.1. Test setup and models

The empirical values for all tables in this paper were ob-
tained on an Athlon XP1900+ with an NVIDIA GeForce3
graphics card. The graphics API was OpenGL15 and the op-
erating system Windows 2000. All timings were taken by
synchronizing the pipeline (using the glFinish instruc-
tion) and reading the processor clock cycle counter both be-
fore and after rendering the object to be timed. The object
was actually rendered several times between the two read-
ings in order to minimize the influence of the synchroniza-
tion overhead on the timing.

We will shortly describe the models that we used for the
measurements in the paper (see also Table 5). The first scene
is a model of a city (see Figure 8), our main benchmark. A
PVS is calculated for each cell in a regular grid of 300x300
10m2 view cells14. The second model is a textured terrain
from another city (see Figure 9). The third model is a for-
est scene (see Figure 10) consisting of 157 trees with vary-
ing complexity. Each object in each scene consists of one or
several lists of indexed triangle strips, where each strip can
have a different texture. Visibility and view-frustum culling
works on the object level. The ratio of actually transformed
vertices per triangle shows how well the scene is adapted to
exploiting the vertex cache. State switches and triangles per
state switch indicate the traversal overhead on the CPU and
the GPU.

7.2. Comparing the per-viewpoint estimation methods

To compare the quality of a prediction function, we con-
ducted the following test. We recorded a path through the
test scenes and compared the prediction function for each
viewpoint with the actual frame time. We compare the time
for all four mathematical heuristics (h1–h4) and per-object
sampling (pos). The constants in the mathematical heuris-
tics were determined using linear regression for 10,000 test
measurements of different objects.

For each frame we calculate the squared difference be-
tween estimated and measured frame time and take the aver-
age of these values as a criterion for the quality of the render-

c© The Eurographics Association 2003.



Wimmer and Wonka / Rendering Time Estimation for Real-Time Rendering

value city terrain forest

#objects 5609 1 157

#triangles 3,453,465 86,400 579,644

#tv 6,419,303 86,000 1,028,978

#tv / tri 1.86 0.99 1.78

#textures 88 1 2

#state switches (sw) 14267 1 314

Table 5: Some descriptive values for the test scenes. #objects
is the number of objects in the scene that are handled by the
occlusion-culling or view-frustum culling algorithms. #tv is
the number of actually transformed vertices.

h1 h2 h3 h4 pos

city 3.27 0.7 1.12 0.26 1.41

forest 30.35 25.5 20.8 20.5 5.41

Table 6: Average squared errors for per-viewpoint estima-
tions (ms2). The newly introduced heuristics h4 and pos (per-
object sampling) show improvements over the previous ones.

ing time estimation (Table 6). We use the city and the forest
scene for this test.

In the city scene we can see that the proposed per-object
sampling heuristic provides reasonable results, but due to the
timing inaccuracy problem it is inferior to all heuristics ex-
cept for the triangle count. The forest scene is more challeng-
ing to predict and here per-object sampling performs much
better than the other algorithms. The newly proposed heuris-
tic h4 based on adding geometry and rasterization terms per-
forms better than the previous mathematical heuristics in
both scenes, and is significantly better than all other heuris-
tics in the city scene.

7.3. Comparing the per-view-cell estimation methods

For the city scene, we precalculated a PVS for a regular
view-cell subdivision. Then we recorded a 1000 frame walk-
through for the per-view-cell sampling method and the per-
object sampling method. Per-view-cell sampling underesti-
mated 2 frames and resulted in an average squared error
of 0.64. The per-object sampling method underestimated no
frame, but due to the timing accuracy problem the average
squared error was increased to 2.33.

7.4. Hardware extension

In the accompanying video, we simulated the conditional
branching extension by randomly selecting some objects for

Figure 8: A snapshot of the city scene.

Figure 9: A snapshot of the terrain scene.

Figure 10: This figure shows a snapshot of the forest scene.
Note that each tree consists of 6654 actually transformed
vertices.

c© The Eurographics Association 2003.



Wimmer and Wonka / Rendering Time Estimation for Real-Time Rendering

some frames which receive a different LOD than the desig-
nated one, as would be the case if the rendering time estima-
tion were incorrect. This effect is compared to the conven-
tional frame-skip effect.

7.5. Discussion

The results obtained during our tests, especially for the per-
viewpoint estimation methods, make it difficult to give a
unique recommendation on which rendering time estimation
to use. For example, the per-object sampling method (pos)
gives better results than the mathematical heuristics in the
forest scene, but is not so well suited for the city scene. The
reason for this are the timing inaccuracies discussed in sec-
tion 6.1. The individual objects in the forest scene consist of
a much higher number of primitives than in the city scene,
which reduces the influence of the inaccuracies and makes
the estimations of the individual objects more precise. The
mathematical heuristics, on the other hand, do not perform
so well on the forest scene because this scene contains trian-
gles of strongly varying screen projections, which influences
the rendering time in ways that a single analytic formula is
not able to capture.

Another factor which will influence the decision on a suit-
able rendering time estimation method is the involved com-
putational effort. While the per-object sampling method can
provide potentially superior results (see the forest scene), it
also requires a costly sampling step for each individual ob-
ject.

In summary, we recommend the per-object sampling
method in cases when an exact estimation is critical and
the mathematical heuristics fail. This is likely to happen for
objects with many triangles of strongly varying screen pro-
jections. In all other cases, the newly proposed heuristic h4
presents an improvement over previous heuristics. However,
when the hardware extensions proposed in this paper are
available, the per-object sampling estimation will be signifi-
cantly more attractive, if one is wiling to invest the effort in
preprocessing.

8. Conclusions

In this paper, we introduced a framework for estimating the
rendering time for both viewpoints and view cells in a real-
time rendering system. We showed that previous work only
captures certain aspects of the rendering time estimation and
is only applicable under controlled circumstances. However,
our aim is to achieve a system with a constant frame rate of
at least 60 Hz in order to avoid annoying ghosting artifacts
and frame skips. We propose several new rendering time es-
timation functions to be used in our framework, including
one based on per-object sampling (pos), and one based on
an improved mathematical heuristic (h4), and demonstrated
their applicability in a walkthrough setting. While the new
heuristics showed significant improvements over previous

methods in some cases, we also observed that their effec-
tiveness is hampered by limitations in current graphics hard-
ware, which is not suited for constant frame rate systems. We
therefore propose two hardware extensions that remedy this
problem, one for accurate timing measurements, and one for
conditional branches in the rendering pipeline.

References

1. Daniel G. Aliaga and Anselmo Lastra. Automatic image
placement to provide a guaranteed frame rate. In SIGGRAPH
99 Conference Proceedings, pages 307–316, 1999. 1, 2, 8

2. John Carmack. Plan update 03/07/00, 2000. available at
http://finger.planetquake.com/plan.asp
?userid=johnc&id=14310. 4

3. NVIDIA Corporation. Nvidia developer website, nvtristrip
1.1, 2003. http://developer.nvidia.com/. 5

4. NVIDIA Corporation. Nvidia opengl specifications,
vertex array range extension, 2003. available at
http://developer.nvidia.com/. 5

5. Thomas A. Funkhouser and Carlo H. Séquin. Adaptive display
algorithm for interactive frame rates during visualization of
complex virtual environments. In SIGGRAPH 93 Conference
Proceedings, pages 247–254, 1993. 1, 2, 5, 8, 9

6. N. Gartner, C. Messer, and A. Rathi. Traffic flow theory. Tech-
nical report, Turner-Fairbank Highway Research Center, 1993.
4

7. James L. Helman. Architecture and performance of entertain-
ment systems, appendix a. ACM SIGGRAPH 95 Course Notes
#6, pages 1.19–1.32, 1995. 1, 9

8. Hugues Hoppe. Optimization of mesh locality for transparent
vertex caching. In SIGGRAPH 99 Conference Proceedings,
pages 269–276, 1999. 2, 8

9. ATI Technologies Inc. Truform – white paper.
http://www.ati.com/technology/, 2001. 5

10. ATI Technologies Inc. Ati opengl extensions, vertex array ob-
ject extension. http://www.ati.com/, 2003. 5

11. Kekoa Proudfoot, William R. Mark, Pat Hanrahan, and Sve-
toslav Tzvetkov. A Real-Time procedural shading system for
programmable graphics hardware. In SIGGRAPH 2001 Con-
ference Proceedings, pages 159–170, 2001. 5

12. Matthew Regan and Ronald Pose. Priority rendering with a
virtual reality address recalculation pipeline. In SIGGRAPH
94 Conference Proceedings, pages 155–162, 1994. 2

13. John Rohlf and James Helman. IRIS performer: A high per-
formance multiprocessing toolkit for real–Time 3D graphics.
In Andrew Glassner, editor, SIGGRAPH 94 Conference Pro-
ceedings, pages 381–395, July 1994. 2

14. Peter Wonka, Michael Wimmer, and Dieter Schmalstieg. Vis-
ibility preprocessing with occluder fusion for urban walk-
throughs. In Rendering Techniques 2000, pages 71–82, 2000.
10

15. M. Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL Pro-
gramming Guide. Addison Wesley, 1999. 10

c© The Eurographics Association 2003.

http://finger.planetquake.com/plan.asp
?userid=johnc&id=14310
http://developer.nvidia.com/
http://developer.nvidia.com/
http://www.ati.com/technology/
http://www.ati.com/

