
Distributed Open Inventor: A Practical Approach to
Distributed 3D Graphics

Gerd Hesina, Dieter Schmalstieg, Anton Fuhrmann, and Werner Purgathofer
Vienna University of Technology, Austria

{hesina|schmalstieg|fuhrmann|purgathofer}@cg.tuwien.ac.at

ABSTRACT
Distributed Open Inventor is an extension to the popular Open
Inventor toolkit for interactive 3D graphics. The toolkit is
extended with the concept of a distributed shared scene graph,
similar to distributed shared memory. From the application
programmer's perspective, multiple workstations share a common
scene graph. The proposed system introduces a convenient
mechanism for writing distributed graphical applications based on
a popular tool in an almost transparent manner. Local variations
in the scene graph allow for a wide range of possible applications,
and local low latency interaction mechanisms called input streams
enable high performance while saving the programmer from
network peculiarities.
Keywords
Distributed graphics, concurrent programming, scene graph,
distributed virtual environment, computer supported cooperative
work, virtual reality

1. INTRODUCTION
The rapid evolution of high performance computer networks - in
particular the Internet - has created the opportunity for the
development of distributed graphical applications. On the one
hand, vertical distribution is used to enhance the performance of
graphical applications by executing on an ensemble of separate,
communicating machines, exploiting the resulting parallelism [6].
Such a configuration, often called decoupled simulation [13], is
commercially available via tools like Performer [11]. On the other
hand, horizontal distribution is used to enable collaborative
applications, that allow multiple users to work together, possibly
over large distances. Particularly successful domains are
Computer Supported Cooperative Work (CSCW) and Distributed
Virtual Environments (DVE). However, these systems are often
based on distributed databases and proprietary protocols which
are both application specific and thus fail to provide a general
mechanism for graphics.
Current general purpose graphics libraries are engineered around
the concept of a scene graph, a hierarchical object-oriented data
structure. Such a scene graph gives the programmer an integrated

view of graphical and application specific data, and allows for
rapid development of arbitrary 3D applications, which is the
amount of flexibility we desire. Unfortunately, these toolkits have
no built-in support for distribution.
A general-purpose distributed graphics toolkit should not place
programming complexity on the programmer, or it will not be
used. In particular, the programmer should not be forced to
change the usual work style because of distribution. Obviously, a
straight forward approach to achieve this requirement is to extend
a toolkit that programmers are already familiar with to support
distribution in a transparent way so that existing code continues to
work with no or only minor modifications and new applications
can be written without learning a new framework.

Figure 1: A single user’s view of an interactive graphical
application (top) is extended with the concept of a distributed
shared scene graph (bottom) for multiple users.

We achieve this goal by extending a popular mainstream graphics
toolkit, Open Inventor [17] (OIV). This toolkit is widely available
and popular with graphics programmers, and is based on the most
widely accepted programming language for graphics (C++). Our
approach - Distributed Open Inventor (DIV) - extends the basic
software to support a distributed shared scene graph, comparable
to distributed shared memory (Figure 1). The implementation is
almost transparent to the application programmer. Distributed
programs generally execute efficiently, and the programmer need
not deal with network peculiarities. Our approach is particularly
interesting from a software engineer’s perspective, as OIV is
commercial software not available as source code, and so we
cannot rely on any techniques that require modification of the
underlying code base.

Display

Display

User Application Scene Graph

Single User:

Multiple User:

User Application

Distributed shared
scene Graph

User Application Display

2. DISTRIBUTED SHARED SCENE
GRAPH
2.1 Motivation and overview
A scene graph is a hierarchical data structure of graphical objects.
The application builds and maintains the scene graph, and the
graphics toolkit uses it to create images. DIV’s scene graph has
the semantics of a database held in distributed shared memory [7]:
Multiple workstations in a distributed system can make concurrent
updates to the system, and all updates are reflected at each
workstation’s view of the scene graph. The scene graph represents
the shared state of the distributed systems to both the application,
and to the users via the images rendered from it.
The DIV runtime system takes care that all views are updated in a
timely fashion, and that conflicts arising from simultaneous or
near simultaneous updates of the same data entity are resolved so
the consistency of the shared scene graph is not compromised.
The simplest approach to a synchronous view on shared data is to
store the data only once and redirect any access via remote
procedure calls (e. g. Sun RPC [19], Java RMI [18], CORBA [1],
DCOM [12]). However, interactive graphical applications, in
particular virtual environments, require that the data used for
rendering is stored locally at the workstation, or interactive frame
rates will be impossible. Therefore pure client-server approaches
are infeasible for our purposes.
Instead, our approach relies on replication of the scene graph (or
at least, the relevant portion) at every workstation and keep these
replicas synchronized. In this section, we give an overview about
how this goal is achieved. First an analysis of the paths that data
flows in an interactive graphics application is given. We then
consider the characteristics of these paths, in particular, which
path must be fast and therefore optimized (such as the transfer
from the graphical data base to the rendering hardware mentioned
above).

2.2 Communication path for interactive
graphics applications
Interactive graphical applications place the human user in a loop
with the computer. A simple model of this loop is composed of
the following stages (Figure 2):

• Input from the user

• Application specific computation

• The scene graph representing the visual state of the system

• Display of the scene graph
This model features the following principal communication paths
within the computer system:

• Propagation of input events from the input devices to the
computation module

• Updates to the scene graph as a result of computation

• Rendering of a 3D image from the scene graph
Some modifications of the scene graph do not require complex
computations by the application, but can perform simple changes
to scene graph attributes directly related to the input, but with
highest possible responsiveness. The graphics toolkit allows to set
up such interactions (e. g. dragging, camera movement) to work
within the runtime software at maximum performance, without

involving user written computation code (comparable to nervous
reflexes which do not involve the human brain). We call such
communication paths input streams (Figure 2).

Figure 2: Typical communication path in an interactive
graphical application placing the human in a feedback loop.

Because of performance requirements, input streams cannot be
distributed over the network - the interaction would be too slow
and the network load too high. Therefore, input streams are
allowed to make local modifications to the scene graph, with
mandatory synchronization only taking place after the input
stream has been disabled (optionally updates can be made for
synchronization purposes with lower frequency).
For the design of DIV, we must distinguish which communication
paths must be fast and hence require the communicating
components to reside at the same workstation. Clearly, rendering
must be as fast as possible, which requires the scene graph to be
stored locally and thus created the need for replication in the first
place. Additionally, dividing interactions into input streams and
input events allows to keep input streams locally, and distribute
only input events. We have followed these design principles
throughout our work.

3. REPLICATED SCENE GRAPH
PROTOCOL
This section explains the protocol necessary to synchronize two
copies of a scene graph. Let us first examine the properties of the
data structure we are dealing with. A scene graph is an object-
oriented hierarchical structure reflecting the semantic
relationships of graphical objects in the scene. It is composed of
nodes, which are implemented as first class objects in the toolkit’s
underlying object-oriented host language (C++ in the case of
Open Inventor). The toolkit typically offers a large variety of node
classes for all purposes of the application. Each node is composed
of fields that store that attribute data for a particular node class. A
directed acyclic graph is constructed from group nodes that store
links to their children. Rendering is a by-product of traversing the
scene graph and executing each node’s rendering method.
The vocabulary of operations possible on a scene graph consists
of relatively few messages. The state of every node is determined
by a node’s fields. Reading a field’s value does not change the
state of the scene graph and therefore need not be distributed.

User

Display

Application

updates
Scene Graph

rendering

Input
input
 eventsinput

streams

The most common operation that must be propagated is an update
of a field’s value. Fields store a basic data type such as numerical
values, boolean flags, vectors, matrices etc. The information
necessary to encode such an update can be encoded in fixed size
messages and efficiently transmitted over the network.
A special case occurs when the structure of the scene graph itself
changes - nodes may be added or removed. Special messages are
reserved to create and delete nodes. Note that while a typical
graphical application frequently performs field updates such as
changing the position of an object, changes to the scene graph’s
structure are relatively rare. However, if node creation occurs,
there is a tendency to create a whole sub graph at once, consisting
of a substantial amount of data. To make this process more
efficient, applications often load whole sub graphs from a file.
Our implementation generalizes this approach by introducing a
message which allows all participating workstations to load a sub
graph either from file (if a common file service exists) or from a
URL. This solution is convenient for application programmers
and also more efficient than creating node by node.
Deletion of group nodes is always recursive, i. e. if a parent node
is deleted and its children are not referenced elsewhere in the
scene graph, the children are also deleted, hence no message for
deleting sub graphs is necessary.
Per default, nodes in OIV are anonymous unless the programmer
explicitly specifies a name. However, references to nodes in
messages require a unique node identifier. Therefore a message
for naming a node (the node is identified by indicating the path
from the root) is introduced.
A summary of the messages necessary to keep scene graph
replicas synchronized is given in Table 1.

Message parameters

Update field node id, field id, value

Create node node type, parent node name,
child index

Delete node node name

Create sub graph file name or URL, parent node
name, child index

set node name path to node, new node name

Table 1: protocol to keep scene graphs synchronized

4. LOCAL VARIATIONS
Most applications will just require to share a scene graph.
However, a potentially much larger range of distributed graphics
applications can be constructed by allowing local variations in the
scene graph. Local variations (Figure 3) can be useful in a variety
of ways:

• Individual content per user: Each user may operate on a
variety of data sets, and choose to share only some of them,
or decide on-line which data sets can be seen by other users
and which not. Reasons may include privacy and security
(compare [10]), individuality (e. g. a private shelf or clip
board) or work flow (only “polished” data is shared).

• The same data may be viewed differently by multiple users,
which is different to the above in that structurally identical or
at least similar data is shown with different attributes to
different users. Reasons to change the representation of one

particular data set for individual users can be motivated by
their roles. For example, a customer sees a simpler
representation than the sales manager, or a teacher sees
solutions to problems that the students may not see.
Sometimes part of the data (such as labels) may also be
intentionally hidden from other users, for example in multi-
player games [20] (see Figure 4).

• Individual viewpoints are a special case of individual
content. This concept is particularly useful for virtual
environments (see section 6), where head tracking on a per-
user base determines the position of a virtual camera.

Figure 3: Local variations (such as a “shelf”) allow to
customize the behavior for each user.

Figure 4: Mahjongg is a multi-user game. Note how the play
tile labels of user 1 are hidden in the view of user 2 and vice
versa.

Some typical editing operation such as high lighting, selection,
dragging, or cursor display require locally varying graphics. Note
that these interaction concepts work in conjunction with low-

Client

local
“shelf”

local
root
node

replica
of global

scene

Server

master copy of global scene

updates

View of user 1

View of user 2

latency input streams (see section 2.2) that short cut the
distributed communication paths.
Using DIV to construct a scene graph that is partially distributed
is straight forward: The scene graph used locally can vary from
workstation to workstation. The only restriction is that those
portions that are distributed must be replicated at all workstations,
which does not affect applicability in practice.

5. NETWORKING
Apart from basic connectivity, a key issue in distributing changes
to a shared database like DIV’s scene graph is how consistency
among the participating processes is guaranteed. Several
approaches to this problem have been investigated in the context
of distributed virtual environment, and can be loosely categorized
into pure client-server solutions (often found in Internet gaming
such as Ultima Online [9]), pure peer-to-peer communication
(such as DIVE [3]) and hybrid topologies (such as RING [5]).
Trade-offs in designing ideal network support are application
specific and it is therefore difficult to design a distributed graphics
toolkit that performs well under all circumstances while still be
sufficiently suited for general purposes. We have therefore
designed networking support in DIV as a configurable module to
be prepared for future needs. The currently supported
implementation is intended for high performance and scalability
for applications that require high bandwidth such as immersive
virtual environments with body tracking.
For achieving consistency, we employ a similar approach like
Repo-3D [8]: a sequencer process performs serialization of events
generated by multiple users. Changes to the scene graph are then
distributed via reliable multicasting (based on UDP with negative
acknowledgments) to the participants, so that a consistent view of
the scene graph replicas is maintained. There may be more than
one sequencer present to avoid overloading one process. Typically
the scene graph is coarsely divided into several logically coherent
chunks (sub scene graphs) such as the content of different 3D
windows [4], applications or data sets, which are then associated
with separate sequencer processes. Increased flexibility is
obtained by allowing a participant to choose to replicate all such
sub scene graphs, or select any subset, depending on application
semantics and user preferences.
Using this approach, it is possible to perform application specific
computation either locally at each participant, or once in the
sequencer process (the sequencer is then funtionally equivalent to
an application server). The latter allows a certain degree of
vertical distribution - for example, application specific
computation can be performed by a compute server with multiple
CPUs, while the participating workstations can focus on 3D
rendering. It is also possible to create asymmetric master-slave
configurations (for example, public demonstrators or location
based entertainment).

6. APPLICATION IN A VIRTUAL
ENVIRONMENT
Virtual environments differ from desktop-based interactive
graphical applications primarily in their choice of input and
output devices. While output is shown - usually in stereo - on a
head-mounted display, or in a CAVE, input is generated using a 6

degree of freedom (6DOF) tracking system such as an Ascension
Flock of Birds.
While there is no principle difference of tracker data from input
received from a mouse or keyboard, the high data rate (6DOF x
multiple stations x 120 updates/sec) makes it necessary to
consider the work load placed on each part of the distributed
system when processing input from 6DOF trackers.
Furthermore, virtual environments typically demand a high-
performance, low latency setup. For example, head tracking
should directly control the virtual camera used to render the user's
view. Such a requirement is directly equivalent to our input
streams in that the communication path from input source to final
image should be as fast as possible. Unfortunately, tracking
multiple users requires that tracker data is sent over the network at
some point, as only a single workstation can be connected to the
tracker (typically via a serial line).
Our solution is based on the Studierstube virtual environment [4]
modified to use DIV (Figure 5). We resolve the issue of short
communication path by distinguishing a tracker server, one or
multiple application servers, and rendering clients. The tracker
server uses its own multicast group to transmit tracker data over
the network to both application servers and rendering clients. An
additional benefit of this approach is that computationally
intensive filtering and prediction tasks applied to the tracker data
can be carried out by the tracker server without consuming
resources on other workstations.

Figure 5: The Studierstube virtual environment has been
modified to use DIV together with a tracker server that
multicasts tracker data over the network.

The way the tracker data is treated by the rendering clients is quite
different from the application servers:
The rendering clients use the tracker data directly as an input
stream for continuous actions, for example to control the virtual
camera or to control interaction widgets such as the rubber band
shown in Figure 9.
The application servers transform the tracker data into input
events. For example, the server notes when the tracker hits a
button area in 3D and passes a “press button” event to the
application code, which then reacts appropriately.
Creating interaction elements that execute in such a hybrid
client/server style requires a little effort, but it keeps
communication paths as shorts as possible. Tracker data is always
directly delivered to the workstation that needs it, no matter
whether it is a client or server.

tracker
server

client 1 client 3client 2

appl.
server

T

T

T T

T

T T

T

T

Update events

HMD

tracking data

7. IMPLEMENTATION
7.1 Software architecture
Open Inventor is a commercial software product available for
most graphics platforms, (including most Unix variants and
Windows NT) and uses OpenGL for rendering. It was chosen
because of its popularity, flexibility and because of legacy
applications available in our lab. OIV is implemented as an
object-oriented class hierarchy in C++ and a library for runtime
binding. Refer to Figure 6 for an overview.

Figure 6: DIV is software that plugs into a standard graphics
solution – Open Inventor – to provide distribution.

The obvious choice of adding distribution properties to a class
hierarchy is to modify one of the base classes to take care of
distribution, so that this property is inherited throughout the class
hierarchy. Unfortunately, Open Inventor as a commercial product
is not available in source code, which ruled out this approach.
Instead, we resorted to a different approach which is equally
feasible and works even if no source code is available: OIV has a
built-in concept of notification that is used to propagate updates
upwards in the scene graph hierarchy if a node is modified. These
notification events can be monitored with a so-called node sensor.
A user-specified callback function is executed whenever
something changes in the sub graph associated with the node
sensor. The callback receives as parameters references to the field
which has changed and to the node containing the field. Update
messages can trivially be constructed from this information, as
only the new absolute value of the field needs to be transmitted
(idempotent messages). Recording the modifications made to a
scene graph by an application implicitly serves as a serialization
mechanism if the application receives input events from multiple
users.
A slightly more complicated situation arises if the structure of the
scene graph itself changes, i. e. a node is added or deleted. In this
case, the node sensor still calls the user's function, indicating the
group node whose children have changed, but does not indicate

which child has been added or removed. We resolved this matter
by caching the hierarchical structure with a “shadow” scene graph
that consists of copies of only the group nodes, while leaf nodes
are referenced. When a group's children change, the group node is
compared to its shadow to evaluate what change has been made.
The shadow data structure is not included in the scene and thus
not visible. It has also a small memory footprint and little
computational overhead as it contains only links.
DIV uses a similar approach as Avocado [21] to handle late-
joining users. A new user has no knowledge of the current shared
application state and therefore it is impossible to participate
without an atomic state transfer from an old user to the new one.
During this atomic state transfer all other communications within
that certain group is suspended until the transfer completes.

7.2 Lazy naming
As mentioned in section 3, every message refers to a node and
thus needs to uniquely identify the node. OIV has a built-in
naming scheme for nodes based on a hash table, which is highly
efficient and ideal for our purposes. It also lets users specify
names for nodes in geometry files (.iv) which is a convenient way
for applications to identify nodes and also works when the
geometry file is distributed. However, it frequently occurs that
applications modify anonymous nodes and these modifications
have to be distributed.
In case of such an event, DIV automatically detects that the node
is nameless and resolves the problem: The node is assigned a
synthetic unique name composed of a prefix and the path from the
root. This name is distributed (hence the set node name message),
and then the update message refers to the newly named node. This
lazy naming scheme creates extra network traffic only the first
time a node is modified. As the working set of nodes that are
modified in the life cycle of an application is typically small, the
resulting overhead is negligible and independent of a potentially
huge scene graph.

7.3 Usage example
In order to demonstrate the ease of transformation of exiting OIV
applications into distributed applications based on DIV, we give a
code example. Shown are the few modifications necessary to
achieve a simple master-slave configuration. The first step is to
create a DIV manager object for master or slave operation:
div = new CDivMain(ipAddress, port,

masterOrSlave);

The next step is to create a root node for the scene graph at the
master and enable sharing:
root = new SoSeparator;

root->ref();

div->shareNode(root, “myRootNode”);

The parameter “myRootNode” is required to identify the
corresponding root nodes in the master and slave process. The
slave has several options to build a corresponding scene graph -
either create it locally, or load it from a file or via the network. In
any case, it must name its root node corresponding to the master:
root->setName(“myRootNode”);

Application

DIV

Open Inventor

Graphics
Hardware

Network
Hardware

Application
layer

Toolkit
layer

Hardware
layer

API

Finally, both master and slave call their main loop. For a slave,
DIV provides a modified main loop which compensates the fact
that OIV is not thread safe and can therefore not be used for
asynchronous processing of network updates. Figure 7 shows an
example of an update.

Figure 7: Example of a modified field update in a master-slave
configuration. The field “height” of node in the master’s scene
graph is modified. Via the notification mechanism, the change
is propagated first to the shared root, then via DIV’s
networking layer to the slave process. At the receiver, DIV
finds the corresponding node from OIV’s hash table and
updates the corresponding field.

8. RESULTS
Several distributed multi-user applications were implemented with
DIV. To verify that DIV indeed provides a programming
environment that is convenient for programmers familiar with
scene graph toolkits, and that distribution is almost transparent,
we have extended existing single user applications written for
OIV. The fact that DIV is mostly equivalent to OIV allowed to
realize our test applications in a few days.
The first example that was chosen for distribution is the maze
game (Figure 8) featuring a hand-held labyrinth toy which can be
tilted to make a ball roll through the corridors. The objective is to
guide the ball to the goal while avoiding the holes in the maze's
floor. The game was distributed for multiple users, allowing each
user to see and manipulate the maze. Updates were intentionally
made relative so that the resulting tilt is equal to the sum of the
steering motions of all users, which creates an interesting and
entertaining collaborative task.
Users can also see each other's point of view represented by a
simple avatar, a feature which makes use of a locally varied scene
graph (each user's scene graph contains avatars for the other users,
but not for the user).
A second example was constructed from a multi-user painting
application implemented in our virtual environment Studierstube.
Multiple users can collaboratively apply 3D paint into a common
work volume. Each user wears a head-tracker and a tracked
“brush” tool; the data from the head and tool tracker is directly
fed as an input stream to the virtual camera and cursor,
respectively.
Parameters such as paint color, size of paint droplets and paint
pressure are controlled with local interaction widgets, which
represent local variations of the scene graph - each user can have
an individual current color etc. Furthermore, we make use of local
variations combined with input streams for the line drawing utility
(Figure 9), which displays a rubber band while the user is
dragging. When the rubber band is released, a line of paint
droplets is created and added to the shared scene graph.

Figure 8: The shared maze game allows users to collaborate
(or work against each other) using multiple workstations.

Figure 9: The shared spraying application allows multiple
users to paint collaboratively. The top image shows a user
drawing a rubber band, which is an example of a local
graphical variation connected to an input stream. Note how
the second user’s view (bottom image) does not show the
rubber band.

9. RELATED WORK
A lot of research has been dedicated to building common virtual
places in which users can interact with each other and with the
underlying simulation. This research has produced a number of
platforms such as NPSNET [23], SPLINE [22], AVIARY [15],
MR Toolkit [14], NetEffect [2], or RING [5]. Years of research
and experiments with or for these platforms have led to the

root root

OIV hashtableDIV receiveDIV sensor
callback

evolution of several techniques for implementing efficient
networked virtual environments. However, these systems are
specially designed for the purpose of the DVEs (such as training,
playing or scientific visualization) and not designed for
supporting general distributed interactive 3D graphics
applications. In particular, it is common to separate the visual
representation of objects from the application semantics. While
this increases modularity in the design, it also creates a “dual
database” problem. Some architectures including recent work on
DIVE [3], Avocado [21] and Repo-3D [8] address this problem in
a manner very similar to DIV’s distributed shared scene graph.
As MacIntyre and Feiner put it, “Keeping these dual databases
synchronized is a complex, tedious, and error-prone endeavor. In
contrast, some non-distributed libraries, such as Inventor, allow
programmers to avoid this problem by using the graphics scene
description to encode application state”. Repo-3D addresses the
problem using Modula-III with language embedding of
distributed objects together with a custom graphics solution
(Obliq-3D). While Modula-III is certainly a good choice for
language-level embedding of distributed objects, in our opinion
the user acceptance of Avocado [21] - a solution based on
mainstream choices (C++, Performer [11]) - would be higher.
However, Avocado relies on subclassing Performer to mix in the
desired transparent support for distribution. This implies that
Avocado applications can only use those features of Performer
made available through subclassing. Furthermore, many
architectural features of Avocado - such as field contained in
scene graph nodes and connections between fields - are standard
features of OIV, but not part of Performer. In other words,
extending OIV with DIV yields a tool which is less complex, but
more complete than Avocado. In particular, backward
compatibility with a large set of legacy applications is intriguing.

10. CONCLUSIONS AND FUTURE WORK
This paper has presented a practical approach to distributed
graphics, realized as DIV, the Distributed Open Inventor library.
DIV is founded on the notion of a distributed shared scene graph,
a powerful data structure that unifies graphical and application
data with distributed control. Our implementation extends the
popular Open Inventor toolkit and thus allows programmers to
continue software development in a familiar style and software
development environment. Our approach is almost completely
transparent to the application programmer and allows existing
applications to be distributed with very little effort.
We are currently working on a more complete integration of DIV
and Studierstube software. All of the interaction tools designed
for Studierstube can be realized with DIV, but current
implementation semantics do neither distinguish shared from local
state nor input events from input streams, which is essential for
distribution with reasonable performance. Further plans involve
the development of new interaction styles that make only sense
within a truly distributed framework. For latest developments and
results see http://www.cg.tuwien.ac.at/research/vr/div/.

11. ACKNOWLEDGMENTS
This work has been supported by the Austrian Science Funds
(FWF) under project no. P-12074-MAT. Special thanks to
Hermann Wurnig for working on the implementation and to
Michael Gervautz.

12. REFERENCES
[1] Ben-Natan, R. CORBA: A Guide to the Common Object

Request Broker Architecture, McGraw Hill, 1995.

[2] Das, T. K., Singh, G., Mitchell, A., Kumar, P. S., McGhee,
K. NetEffect: A Network Architecture for Large-Scale Multi-
User Virtual Worlds. In Proc. of the ACM Symposium on
Virtual Reality Software and Technology (VRST’97), 157-
164, 1997.

[3] Frécon, E, and Stenius M. DIVE: A Scaleable network
architecture for distributed virtual environments. Distributed
Systems Engineering Journal (special issue on Distributed
Virtual Environments), 5(3), 91-100, Sept. 1998.

[4] Fuhrmann, A., and Schmalstieg, D. Multi-Context
Augmented Reality. Technical Report TR-186-2-99-14,
Institute of Computer Graphics, Vienna University of
Technology, 1999. URL:
http://www.cg.tuwien.ac.at/research/TR/.

[5] Funkhouser, T. RING: A Client-Server System for Multi-
User Virtual Environments. 1995 Symposium on Interactive
3D Graphics, 85- 92, April 1995.

[6] Gelernter, D. Mirror worlds. Oxford University Press, 1992.

[7] Levelt, W. G., Kaashoek, M. F., Bal H. E., and Tanenbaum,
A. S. A Comparison of Two Paradigms for Distributed
Shared Memory. Software - Practice and Experience, 22(11),
985-1010, Nov. 1992.

[8] MacIntyre, B., and Feiner, S. A Distributed 3D Graphics
Library. SIGGRAPH 98 Conference Proceedings, Annual
Conference Series, 361-370, 1998.

[9] Origin. Ultima Online, online computer game, 1997. URL:
http://www.owo.com/.

[10] Pang, A., and Wittenbrink, C. Collaborative 3D
Visualization with CSpray. IEEE Computer Graphics &
Applications, 17(2), 32-41, 1997.

[11] Rohlf, J., and Helman, J. IRIS Performer: A High
Performance Multiprocessing Toolkit for Real-Time 3D
Graphics. In Proc. ACM SIGGRAPH ‘94, 381-394, 1994.

[12] Rubin, W., and Brain, M. Understanding DCOM. Prentice
Hall PTR, 1999, ISBN 0-13-095966-9.

[13] Shaw, C., Green, M., Liang, J., and Sun, Y. Decoupled
Simulation in Virtual Reality with the MR Toolkit. ACM
Transactions on Information Systems, 11(3):287-317, 1993.

[14] Shaw, C., and Green, M. The MR Toolkit peers package and
experiment. In Proc. of VRAIS ‘93, 463-469, 1993.

[15] Snowdon, D., and West, A. AVIARY: Design Issues for
Future Large-Scale Virtual Environments. Presence, 3(4),
288-308, 1994.

[16] Sony Corporation. Everquest, online computer game, 1999.
URL: http://www.everquest.com/.

[17] Strauss, P. S., and Carey, R. An Object-Oriented 3D
Graphics Toolkit, In Computer Graphics (Proc. ACM
SIGGRAPH ‘92), 341-349, Aug, 1992.

[18] Sun Microsystems. Java Remote Method Invocation -
Distributed Computing for Java. March 1998. URL:
http://java.sun.com/marketing/collateral/javarmi.html.

[19] Sun Microsystems. Remote Procedure Call Protocol
Specification. Network Working Group RFC1050, April
1988.

[20] Szalavari, Z., Eckstein, E., and Gervautz, M. Collaborative
Gaming in Augmented Reality. Proceedings of VRST’ 98,
195-204, Taipei, Taiwan, Nov. 2-5, 1998.

[21] Tramberend, H. Avocado: A Distributed Virtual Reality.
IEEE Virtual Reality, 1999.

[22] Waters, R., Anderson, D., Barrus, J., Brogan, D., Casey, M.,
McKeown, S., Nitta, T., Sterns, I., and Yerazunis, W.

Diamond Park and Spline: Social Virtual Reality with 3D
Animation, Spoken Interaction and Runtime Extendability.
Presence, 6(4), 461-481, 1997.

[23] Zyda, M. J., Pratt, D. R., Monahan, J. G., and Wilson, K. P.
NPSNET: Constructing a 3D Virtual World. In Proc. 1992
ACM Symposium on 3D Graphics, 147-156, March 1992.

	INTRODUCTION
	DISTRIBUTED SHARED SCENE GRAPH
	Motivation and overview
	Communication path for interactive graphics applications

	REPLICATED SCENE GRAPH PROTOCOL
	LOCAL VARIATIONS
	NETWORKING
	APPLICATION IN A VIRTUAL ENVIRONMENT
	IMPLEMENTATION
	Software architecture
	Lazy naming
	Usage example

	RESULTS
	RELATED WORK
	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

