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Figure 1: A CT scan of a head reconstructed with (a) linear interpolation and central di�erences with linear interpolation, (b)
Catmull-Rom spline and derivative and (c) Kaiser windowed sinc and cosc of width three with numerically optimal parameters.

Abstract

Ideal reconstruction �lters, for function or arbitrary deriva-
tive reconstruction, have to be bounded in order to be prac-
ticable since they are in�nite in their spatial extent. This
can be accomplished by multiplying them with windowing
functions. In this paper we discuss and assess the quality
of commonly used windows and show that most of them are
unsatisfactory in terms of numerical accuracy. The best per-
forming windows are Blackman, Kaiser and Gaussian win-
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dows. The latter two are particularly useful since both have
a parameter to control their shape, which, on the other hand,
requires to �nd appropriate values for these parameters. We
show how to derive optimal parameter values for Kaiser and
Gaussian windows using a Taylor series expansion of the con-
volution sum. Optimal values for function and �rst deriva-
tive reconstruction for window widths of two, three, four and
�ve are presented explicitly.

Keywords: ideal reconstruction, windowing, frequency
response, Taylor series expansion

1 Introduction

Reconstruction is a fundamental process in volume visualiza-
tion. Modalities like CT or MRI scanners provide discrete
data sets of continuous real objects, for instance patients
in medical visualization. The function in between sample
points has to be reconstructed.
It is well known that a band-limited and properly sampled

function can be perfectly reconstructed by convolving the
samples with the ideal function reconstruction �lter. Simi-
larly, derivatives of the function can, due to linearity of con-



volution and derivation, directly be reconstructed by con-
volving the samples with the corresponding derivative of the
ideal reconstruction �lter. The �rst derivative of a three-
dimensional function, the gradient, can be interpreted as a
normal to an iso-surface passing through the point of inter-
est. This gradient is usually used for shading or classi�cation
and therefore the quality of gradient reconstruction strongly
a�ects the visual appearance of the �nal image.
From signal processing theory we know that the ideal

function reconstruction �lter is the sinc �lter.

sinc(x) =

�
sin�x

�x
if x 6= 0

1 if x = 0
(1)

The �rst derivative of the sinc �lter, called cosc �lter,

cosc(x) =

�
cos(�x)�sinc(x)

x
if x 6= 0

0 if x = 0
(2)

consequently is the ideal �rst derivative reconstruction �l-

ter [1]. In general, the ideal reconstruction �lter of the nth

derivative of a function is the nth derivative of the sinc func-
tion.
However, since these �lters are in�nite in their spatial

extent they are impracticable. Simple truncation causes
severe ringing artifacts, as can be seen in Fig. 6, which
shows the Marschner-Lobb data set [6] reconstructed with
linear interpolation and central di�erences and linear inter-
polation (Fig. 6a), the Catmull-Rom spline and derivative
(Fig. 6b) and the truncated cosc of width three (Fig. 6c).
(for high resolution images please refer to the web page of
this project [15]). We will investigate and explain the cause
of this bad result in frequency domain in Chapter 3 and in
spatial domain in Chapter 4.
To reduce artifacts originating from truncation the ideal

reconstruction �lters can be multiplied with appropriate
functions which drop o� more smoothly at the edges. We will
discuss some of the more commonly used of these functions,
which are adversely called windows. We show that most of
them are unsuitable for reconstruction, especially for higher
order derivative reconstruction, although some, for example
Hamming [5] and Lanczos [16] windows, are reported to be
commonly used.

2 Previous work

Turkowski [16] used windowed sinc functions for image re-
sampling. He found the Lanczos window superior in terms
of reduction of aliasing, sharpness, and minimal ringing as
conclusion of an empirical experiment.
Marschner and Lobb [6] used a cosine-bell windowed sinc

(often called Hann window) and found it superior to the en-
tire family of cubic reconstruction �lters. According to their
metric there is always a windowed sinc with better smooth-
ing and post-aliasing properties. Machiraju and Yagel [5]
use a Hamming windowed sinc without further explanation
of their choice. However, we found the Hamming window
of not being optimal. Recently, Meijering et al. [7] per-
formed a purely quantitative comparison of eleven windowed
sinc functions. They found the Welch, Cosine, Lanczos and
Kaiser windows yielding the best results and noted that the
truncated sinc was one of the worst performing reconstruc-
tion �lters.
Goss [2] extended the idea of windowing the ideal recon-

struction �lter to derivative reconstruction. The parameter
of the Kaiser window controls the smoothing characteristics

of the reconstructed function. Goss uses the windowed cosc
only on sampling points, in between some interpolation has
to be performed which is not stated explicitly.
Most researchers assess the quality of reconstruction �lters

in frequency domain, whereas M�oller et. al [10] propose a
purely numerical method operating in spatial domain. We
will review this method in Chapter 4 as it will allow us to
derive optimal parameters, in terms of numerical accuracy,
for the Kaiser and Gaussian windows.

3 Windowing ideal reconstruction �lters

The windows investigated in this work are

- The rectangular window or box function

��(x) =

�
1 if jxj � �

0 else
(3)

which performs pure truncation.

- The Bartlett window, which is actually just a tent func-
tion:

Bartlett� (x) =

�
1� jxj

�
if jxj < �

0 else
(4)

- The Welch window:

Welch� (x) =

�
1�

�
x

�

�2 jxj < �

0 else
(5)

- The Parzen window

Parzen(x) =
1

4

(
4� 6jxj2 + 3jxj3 0 � jxj < 1

(2� jxj)3 1 � jxj < 2
0 else

(6)
is a piece-wise cubic approximation of the Gaussian
window with extend two. Although its width is not
directly adjustable it can, of course, be scaled to every
desired extend.

- The Hann window (due to Julius van Hann, often
wrongly referred to as Hanning window [17], sometimes
just cosine bell window) and Hamming window, which
are quite similar, they only di�er in the choice of one
parameter �:

H�;�(x) =

�
�+ (1� �) cos(� x

�
) jxj < �

0 else
(7)

with � = 1

2
being the Hann window and � = 0:54 the

Hamming Window.

- The Blackman window, which has one additional cosine
term as compared to the Hann and Hamming window.

Blackman� (x) =

(
0:42 + 1

2
cos(� x

�
)+

0:08 cos(2� x

�
) jxj < �

0 else

(8)

- The Lanczos window, which is the central lobe of a sinc
function scaled to a certain extend.

Lanczos� (x) =

�
sin(�

x

�
)

�
x

�

jxj < �

0 else
(9)
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Figure 2: Rectangular, Bartlett, Welch, Parzen, Hann, Hamming, Blackman and Lanczos windows of width two on top, below
the frequency responses of correspondingly windowed sinc and cosc functions.

- The Kaiser window [3], which has an adjustable param-
eter � which controls how steeply it approaches zero at
the edges. It is de�ned by

Kaiser�;�(x) =

(
I0(�

p
1�(x=�)2)

I0(�)
jxj � �

0 else
(10)

where I0(x) is the zeroth order modi�ed Bessel func-
tion [13]. The higher � gets the narrower becomes the
Kaiser window.

- and we can also use a truncated Gaussian function as

window. It is in its general form de�ned by

Gauss�;�(x) =

�
2�(

x

�
)2 jxj < �

0 else
(11)

with � being the standard deviation. The higher �

gets, the wider the Gaussian window becomes and, on
the other hand, the more severe gets the truncation.

All these windows, except Kaiser and Gaussian windows, are
depicted in Fig. 2 on top, the frequency responses of corre-
spondingly windowed sinc (with window width two) in the
middle row and windowed cosc in the bottom row. Since
function reconstruction �lters are even functions and �rst
derivative �lters are odd functions, the power spectra, as
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Figure 3: Kaiser and Gaussian windows of width two with varying parameters on top, below again the frequency responses of
correspondingly windowed sinc and cosc functions.

depicted in Figs. 2 and 3, actually are the absolute values
of the real respectively the imaginary part of the Fourier
transform of the �lters. Some frequency responses, e.g., the
rectangular or Lanczos windowed sinc and cosc, actually as-
sume negative values, which means that the phases of certain
frequencies are reverted. This, of course, causes severe ar-
tifacts. Consequently, these windows are not suitable for
reconstruction purposes.

Kaiser and Gaussian windows, with varying parameters,
are depicted in Fig. 3 on top, the frequency responses of
correspondingly windowed sinc (with window width two) in
the middle row and windowed cosc in the bottom row. These
plots show that the parameters � and � of the Kaiser and
Gaussian windows directly a�ect the shape of their frequency

responses. The frequency responses for some values of � and
� again become negative, which implies that these values
should be chosen carefully.

4 Numerical analysis

M�oller et al. [10] introduced an elegant method to assess the
quality of a reconstruction �lter, based solely on numerical
accuracy. We will shortly review this method as it is crucial
for our purpose. It will allow us to quantitatively assess �lter
quality in spatial domain and to derive numerically optimal
parameters for Kaiser and Gaussian windows.
Reconstructing a function f(x) or derivatives thereof from

its discrete samples f [k] is done by convolving it with a con-
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Figure 4: Coe�cient plot of Taylor series expansion for windowed cosc �lters with width three.

tinuous �lter:

fr(x) =

k=1X
k=�1

f [k] � h(x� k) (12)

fr denotes the reconstructed function (which can be the
function itself or an arbitrary derivative, depending on the
reconstruction �lter h). Such a convolution is a weighted
average of the samples which is �nite when a �nite recon-
struction �lter is used.

f [k] can now be expanded as a Taylor series in f about x
assuming that the �rst N+1 derivatives of f(x) exist:

f [k] =

NX
n=0

f
(n)(x)

n!
(k� x)

n
+
f
(N+1)(�k)

(N + 1)!
(k� x)

(N+1)
(13)

where �k 2 [x; k]. Substituting this in Eq. 12 and reordering
the terms in order of the derivatives yields

fr(x) =

NX
n=0

an(x)f
(n)

(x) + rN (x) (14)

with the coe�cients

an(x) =
1

n!

k=1X
k=�1

(k � x)
n � h(x� k) (15)

and the remainder term

rN (x) =
1

(N + 1)!

k=1X
k=�1

f
(N+1)

(�k)(k � x)
(N+1)

h(x� k)

(16)
Eq. 14 shows that each derivative of the function has an as-
sociated coe�cient. If a particular derivative of the function
f(x) has to be reconstructed, the corresponding coe�cient
has to be one and all others have to be zero, in the ideal
case. For practicable �lters, only the �rst few coe�cients
will obey this scheme. The more coe�cients agree with this
scheme, the more numerically accurate the �lter is. If the

n
th coe�cient of a nth derivative �lter is di�erent from one,

the �lter has to be normalized by dividing by an [9]. In the
following discussion this normalization step is assumed to be
performed when necessary and not stated explicitly.
The coe�cients an only depend on the �lter. This allows

a classi�cation where all �lters which N th coe�cient, beyond
the coe�cient corresponding to the kind of derivative to be
reconstructed (which has to be one) is di�erent from zero,

belong to one class [9]. Filters in class N�1 are called N
th

degree error �lters (N�EF ). They can exactly reconstruct
a polynomial of degree N�1 or lower. Further assessment of
�lters in one class could be accomplished with the remainder
term rN . Note, that the coe�cients an actually are functions
de�ned between zero and one, i.e., depending on the distance
to the next sampling point [9].
We use this concept to analyze the e�ects of windowing

the ideal reconstruction �lters. In Fig. 4 the coe�cient a0 is
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Figure 5: Coe�cient plot of Taylor series expansion for Kaiser windowed sinc and cosc with varying parameters and window
width two. The right image is a closeup to the minima of these functions.

plotted for the ideal derivative reconstruction �lter (cosc)
windowed with window width three. In order to appro-
priately reconstruct the derivative f

0(x) the coe�cient a0

should be close to zero in the interval [0; 1]. On top left,
the coe�cient plot for the truncated cosc explains the bad
result of Fig. 6. Bartlett, Welch, and Parzen window im-
prove the situation but are still far from zero. On top right,
Hann, Hamming, and Lanczos window are not much better
but the Blackman window shows quite a good result. On
bottom left, the coe�cient plots for the Kaiser windowed
cosc and on bottom right for the Gaussian windowed cosc
show, as one could expect, a direct dependence on the choice
of the corresponding parameters, � and �.

Lets take a closer look at the Kaiser window (a similar ar-
gument holds, of course, for the Gaussian window). Choos-
ing � = 2 obviously is not appropriate for a window width
of three as the coe�cient plot is quite bad. With � = 4 the
situation gets better, and for � = 8 a0 is almost zero. With
� = 16 the situation becomes worse again. One can expect
a value of � between 8 and 16 being optimal for gradient
reconstruction. We will show that such an optimal value
exists and how it can be computed.

5 Optimal parameters for Kaiser and Gaus-

sian windows

As M�oller et al. [10] already mentioned, a �rst derivative re-
construction �lter is useless if the �rst coe�cient a0 is signif-
icantly di�erent from zero. This is the case for the truncated
cosc and the results shown in Figs. 6c and 6i illustrates this
situation. Our goal is to derive optimal parameters, in a
purely numerical sense, for Kaiser and Gaussian windowed
ideal reconstruction �lters.

In order to do this, we compute the L1 norm of the coef-
�cient function an, given by

jjan(x)jj =
Z

1

0

jan(x)jdx (17)

and plot it against the varying parameter of the Kaiser or
Gaussian windows. The L1 norm was chosen for sake of sim-
plicity, it would, of course, also be possible to use the L2 or

L1 norm. The integral in Eq. 17 can be evaluated numer-
ically. For a speci�c parameter to be optimal the resulting
coe�cient error function will have the lowest value. The co-
e�cient error function for the Kaiser windowed cosc (i.e.,
evaluating Eq. 17 for a0) with width two for � between zero
and twelve can be seen in Fig. 5 on the left. Higher values
of � would not be reasonable since the window then already
gets too narrow. This coe�cient error function indeed has a
global minimum, which proves that there is an optimal pa-
rameter. The right image in Fig. 5 shows an enlarged part
of the neighborhood of this minimum.
We want to apply this concept to �nd optimal parameters

also for the Kaiser and Gaussian windowed sinc �lter for
function reconstruction. To reconstruct the function itself,
the coe�cient a0 must be one and all others zero. Due to
the properties of the Taylor series expansion, the coe�cient
with most inuence will be a1. The higher n gets in Eq 15,
the lower the contribution of the coe�cient. So we plot the
L1 norm of this coe�cient against the varying parameters
of Kaiser and Gaussian windowed sinc. The result for the
Kaiser windowed sinc of width two can also be seen in Fig. 5
on the left. Surprisingly, we observe that as the parameter
� of the Kaiser window approaches zero the coe�cient error
function approaches zero also. A Kaiser window with � = 0
is a box function, which would result in a truncation of the
sinc function.
However, truncating the sinc �lter is commonly known to

cause unwanted artifacts, for example ringing [5]. Taking
again a look at the error coe�cient function of the Kaiser
windowed sinc in Fig. 5 we further observe that it takes on
another local minimum. The right image in Fig. 5 again
shows an enlarged portion of the neighborhood of this mini-
mum. Investigation of a0 at this point shows that is is almost
constant one, which it is not for � = 0, so that there is no
normalization step necessary. Furthermore, a2 at this local
minimum is much closer to constant zero than a2 for � = 0
so that we conclude that this local minimum is more appro-
priate than � = 0, although a1 is not exactly zero. The same
holds for the Gaussian window. The only di�erence is that
the Gaussian window approaches constant one (which would
result in a rectangular window) as � approaches in�nity.
With this method we are now able to compute optimal

parameters for Kaiser and Gaussian windowed ideal recon-
struction �lters, in a strictly numerical sense. We evaluated



Window width
2 3 4 5

function reconstruction (sinc) �(Kaiser window) 5.36 8.93 12.15 15.4
�(Gaussian window) 1.11 1.33 1.46 1.63

�rst derivative reconstruction (cosc) �(Kaiser window) 6.05 9.28 12.5 15.5
�(Gaussian window) 1.045 1.238 1.42 1.56

Table 1: Optimal values for the parameters for Kaiser and Gaussian windows for function and �rst derivative reconstruction
with window width two, three, four, and �ve.

values for Kaiser and Gaussian windowed sinc and cosc of
window width two, three, four and �ve, which are presented
in Table 1. Not reected in this table is the fact that the
absolute numerical error is one magnitude smaller for the
Kaiser windowed ideal reconstruction �lters as compared to
the Gaussian or Blackman windowed ideal reconstruction
�lters.

6 Results

To evaluate the results of the last chapters we �rst tested the
reconstruction �lters on a standard arti�cial data set pro-
posed by Marschner and Lobb [6]. We used our framework
\Smurf: a smart surface model for advanced visualization
techniques" [4] which easily allows to replace reconstruction
�lters. We used a ray-casting iso-surface extraction algo-
rithm and always used the �rst derivative of the function
reconstruction �lter also for �rst derivative reconstruction.
This is according to the scheme proposed by Bentum et al. [1]
(with the exception of linear interpolation, where central dif-
ferences with linear interpolation were used).
Fig. 6a shows the result for central di�erences and linear

interpolation. We clearly observe the smoothing, which is
an intrinsic property of this method [2], as the image is too
bright. In Fig. 6b, the Catmull-Rom spline and its derivative
(i.e., a BC-Spline with B = 0 and C = 0:5 [8] or, equiva-
lently, a cardinal spline with a = �0:5 [1]) were used. We see
that the smoothing is reduced but the structure of the arti-
facts remains. In Fig. 6c truncated sinc and cosc were used.
This image shows practically what was discussed theoreti-
cally in Chapters 3 and 4. Truncating ideal reconstruction
�lters is more or less useless.
Figs. 6d { 6f shows images reconstructed with the sinc

and cosc �lter windowed with the more promising windows
from our numerical analysis in Chapter 4. Fig. 6d shows the
Blackman window, which is �xed for a certain width (we
used a window width of three for this image). The Black-
man window gives already quite a good behavior. In Fig. 6e
a Kaiser window of width three was used with � = 8:93 for
function reconstruction and � = 9:28 for �rst derivative re-
construction, according to Table 1, which further reduces the
annoying artifacts present in the previous reconstructions.
A Gaussian window of width three with numerically opti-
mal parameters (� = 1:33 for function reconstruction and
� = 1:238 for �rst derivative reconstruction) shows some ar-
tifacts, especially visible in the highlights, again. This is due
to the fact that a window width of three is too narrow for
the Gaussian window [14].
The �lters were also tested on real world data sets, such

as a CT scan of a human head and an MR scan of a hu-
man kidney. Figs. 6g { 6l show the results for a close-up of
the kidney data set. The same reconstruction �lters were
used in the same order as for the Marschner-Lobb data set
above. Figs. 6g and 6i show again the de�ciencies of linear in-

terpolation and central di�erences with linear interpolation
and truncated sinc and cosc. Cubic splines (Fig. 6h) show
some artifacts especially in the highlights which are removed
by the Blackman and Kaiser window (Figs. 6j and 6k).
The Gaussian window again introduces artifacts, also, quite
notable, in the function reconstruction, due to the window
width of three.
Fig. 1 shows the results for the head data set. Linear

interpolation for function reconstruction and central di�er-
ences with linear interpolation for gradient reconstruction
were used in the left image. We see that this method in-
troduces quite some smoothing, so that the skull appears
quite smooth and visually appealing. However, the close-up
below shows that it is not suitable for reconstructing small
features. In the middle the Catmull-Rom spline was used
both for function reconstruction and gradient reconstruc-
tion. We see that the skull exhibits stair case artifacts as
they are not smoothed out any more but the close-up clearly
exhibits the better reconstruction quality of this �lter. On
the right we used Kaiser windowed sinc and cosc with win-
dow width three and numerically optimal parameters. Here
we can see the better reconstruction especially as the high-
lights in the close-up appear more sharply. Again, the skull
exhibits stair-case artifacts which actually are a visualization
of data accuracy. Although the result with central di�er-
ences is visually more appealing, the Kaiser windowed sinc
and cosc are physically more correct.
For further images (also of the other not so good perform-

ing windows) please refer to earlier work of the authors [14]
and to the web page of this project [15].

7 Conclusions and Future Work

We showed that windowing ideal reconstruction �lters al-
lows to improve reconstruction quality as compared to the
the use of traditional reconstruction methods like linear in-
terpolation or cubic splines. Windowing ideal reconstruction
�lters also has the advantage that better reconstruction can
be achieved by using wider windows, which, however, also
increases the computational cost.
From the comparison of some of the more commonly used

windows we conclude that the choice of the windowing func-
tion is crucial. We showed that some popular windows, like
the Lanczos or Hamming window, are not optimal in the
sense of numerical accuracy. From our experiments as well
as from numerical analysis we found Blackman, Kaiser and
Gaussian windows performing best.
Further, we derived numerical optimal values for Kaiser

and Gaussian windows, which have a parameter to control
their shape. Our analysis of ideal reconstruction �lters win-
dowed with these windows using a Taylor series expansion of
the convolution sum allowed us to determine optimal values
for the parameters of these windows, in a strictly numeri-
cal sense. The Kaiser window performs best in this regard



as the numerical error is smallest. As the Gaussian win-
dows shows some de�ciencies for a window width of three,
we conclude that the Blackman window is a �rst good choice
which, however, can be improved by using a Kaiser window
with numerically optimal parameters.

Continuity conditions, which are very important for the
visual appearance of the resulting image [11] have not been
addressed and are left for future work. Our experiments
showed also that a coupling of function reconstruction and
derivative reconstruction improves over-all reconstruction
quality. This area deserves further investigation, probably
in a way similar to Neumann et al. [12] who use a tight cou-
pling of function and gradient reconstruction based on linear
regression.
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Figure 6: Marschner Lobb data set (a { f) and data set of a human kidney (g { l) reconstructed with (a,g) linear interpolation
and central di�erences and linear interpolation, (b,h) Catmull-Rom spline and derivative, (c,i) truncated (rectangular window)
sinc and cosc of width three, (d,j) Blackman windowed sinc and cosc with window width three, (e,k) Kaiser windowed sinc and
cosc with window width three and numerically optimal parameters and (f,l) Gaussian windowed sinc and cosc with window
width three and numerically optimal parameters.


