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Abstract. We introduce a novel method for identification of objects
of interest in volume data. Our approach conveys the information con-
tained in two essentially different concepts, the object’s boundaries and
the narrow solid structures, in an easy and uniform way. The second
order derivative operators in directions reaching minimal response are
employed for this task. To show the superior performance of our method,
we provide a comparison with its main competitor – surface extraction
from areas of maximal gradient magnitude. We show that our approach
provides the possibility to represent volume data by a subset of a nominal
size.

1 Introduction

The importance of edge information for machine vision is usually motivated from
the observation that under rather general assumptions about the image forma-
tion process, a discontinuity in image brightness can be assumed to correspond
to a discontinuity in either depth, surface orientation, reflectance, or illumination
[8]. A different type of discontinuity – a line is also a structure of particular inter-
est. While in a 2D image the representatives of narrow solid structures are spots
and lines, in volume data this is more general. Identification of blobs, cylinders,
and sheet–like structures plays a crucial role in medical visualization [16].

To represent volume data by just a small subset of important voxels is de-
sirable for and addressed by a number of applications. Interactive volume vi-
sualization over the internet based on a client/server architecture profits from
elaborated strategies for progressive data transmission. Here it is desirable that
the content of a volume is visually interpretable already in the early stages of
transmission to and visualization by a client. To achieve this, the server may start
transmitting salient features earlier than the rest of the data. Non-distributed
visualization may benefit from storing a small, representative subset of the data
to disk. Such a representation can be reused later for a quick preview display us-
ing, e.g., non-photo realistic techniques [14] or algorithms yielding more realism
[9, 11, 13].

For these applications, the subset of high salience has to be identified. The
best established algorithms involve isosurface extraction [17], boundary identifi-
cation or emphasis [7], or narrow solid structures identification or emphasis [1,
15, 16]. While the usual paradigm to identify object boundaries is to evaluate the
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magnitude of the gradient, the identification of narrow solid structures requires
the use of either special filters or 2nd order derivative filters.

In this work we propose a filtering technique for the identification of both
boundaries and narrow structures. Our algorithm is based on identification of
areas with large negative second derivatives, and handles both of the cases in
a uniform way. Defining a salience function based on this quantity allows us to
identify those voxels of the input volume which provide a significant content
necessary for visualization.

In the following section we discuss the theoretical background for our method.
In section 3 its complexity and implementation issues are discussed. Results and
a comparison to the gradient method are presented in section 4.

2 The proposed method

2.1 Edge detectors and line detectors revisited

For edge detection two kinds of filters have been designed – those based on
looking for maxima of the first derivative and those based on looking for zero–
crossings of the second derivative.

While these concepts are intuitive for 1D signals, the situation in higher
dimensions gets more complicated. We assume that the volume is given as a
density function I. To use the extrema of 1st derivatives we need to know the
directions in which they occur. From calculus it is known that for the first
derivative this direction is the gradient vector ∇I and the magnitude of the
derivative in this direction is the magnitude of the gradient: I ′

max = I ′∇ =
||∇I|| = (

∑3
i=1(∂I/∂xi)2)1/2. Looking for maxima of gradient magnitudes yields

an isotropic edge detector which responds both to outer and inner side of the
object equally (Fig. 1a). For the second derivative approach it is necessary to
check the neighborhood of a voxel for zero–crossings, i.e., for areas where the
2nd derivative changes its sign. The 2nd derivative is usually estimated by the
rotationally invariant Laplacian �I =

∑3
i=1 ∂2I/∂x2i . A less referred feature of

the Laplacian operator is that it responds with negative values at the inner part
and by positive values at the outer part of the object’s edge1 (Fig. 1b). We put
this into contrast to the gradient–based edge detection, which yields an equal
response on both sides of an edge and exploit this fact to represent the objects’
edges only by their internal side. Such a representation requires, compared to
the gradient method, a smaller amount of voxels, or in other words it provides a
better distribution over the surface in early stages of the progressive transmission
for a limited bandwidth.

Considering the density profile, it is evident that the concepts of 1st derivative
maxima can not be directly applied for spot and line detection (or, more generally
speaking, for detection of narrow areas which in 3D correspond to blobs, lines,
and sheet–like structures). The response of a 1st order derivative filter to a
line, for instance, results in two lines, which would require a special, nontrivial
1 Assuming the objects are of a higher density than background and not vice versa
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mechanism for detection of the area in-between (Fig. 1a). A 2nd order derivative
filter, on the other hand, responds to a line by negative values at its interior
(Fig. 1b).

As a result we get a twofold interpretation of areas where the 2nd order
derivative operator responds with negative values. Firstly such areas correspond
to internal parts of a boundary, secondly they identify narrow structures. To
make the search for negative areas more feasible for separation by thresholding,
we are interested in the directions where the 2nd order derivatives reach the
minima.
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Fig. 1. Examples for 1D density profile. Responses of a 1st order derivative filter (a)
and a 2nd order derivative filter (b) to an edge and to a line.

2.2 The smallest 2nd order directional derivative

Stating the Taylor expansion of a 3D density function I for the first three terms
in the vicinity, spanned by vectors ∆x, of a 3D point x0

I(x0 + ∆x) ≈ I(x0) + ∆xT∇I(x0) + ∆xT H(x0)∆x (1)
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it is evident, that the 2nd order information is entirely expressed by the sym-
metric Hessian matrix:

H =


 Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz


 where the terms Iab =

∂2I

∂a∂b
(2)

denote the 2nd order mixed partial derivatives. For a fixed x0, the term ∆xT H∆x
gives the second derivative of the density in the direction of ∆x. The Hessian
matrix, as a real–valued and symmetric matrix, has real–valued eigenvalues λi.
From the definition of the eigenvalues, Hvi = λivi, follows that the eigenvalues λi

give the second derivatives in the direction of the eigenvectors vi: λi = vT
i Hvi.

Since H in this context represents a quadratic form, computing the smallest
eigenvalue directly yields the minimal directional derivative at the point x0. In
the following, we will denote this eigenvalue λ3, i.e., I ′′min = I ′′v3

= λ3.

2.3 Salience by smallest eigenvalue

So far we described a mechanism to finding the smallest 2nd order directional
derivative at a given grid point of a volume. As λ3 is just a special case of a 2nd
order directional derivative, the interpretation from section 2.1 in the direction
of the corresponding eigenvector remains the same:

1. Areas featuring very low λ3 represent an inner part of an object’s boundary.
Unlike in the case of gradient magnitude where looking for the maxima yields
a representation of the boundary from both the outer and the inner side, our
approach restricts the representation of boundaries just to the inner side.
Compared to the gradient magnitude operator, the boundary can therefore
be represented by a smaller amount of voxels.

2. Areas with very low λ3 correspond to a structure proportional to a scale given
by a derivative operator. Tracking of structures in volumes (like blobs, lines,
and sheets) by a first derivative operator would be hard if not impossible.

3. Having the minimal second derivative is more suitable for separation by
thresholding than having a second derivative in an arbitrary direction.

Due to these reasons, areas featuring low negative eigenvalues λ3 yield a better
representation of a volume then those with high positive values of the gradi-
ent magnitude. In order to provide a comparative study between these two ap-
proaches, we define the two following salience functions SΓ , SΛ of a voxel v and
the two corresponding p%-subsets of an input volume V they determine:

SΓ [v] = ||∇|| [v] Γ [p] = {p % of V with the highest SΓ }
SΛ[v] = − λ3[v] Λ[p] = {p % of V with the highest SΛ} (3)

For a given percentage p, functions SΓ , SΛ determine the p % of ‘top salient’
voxels which will represent the volume. For a progressive transmission of data
through a network, these functions determine the priority of transmission: the
voxels with higher salience will be transmitted earlier.
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Obviously, there are also other candidates which might succeed well in the
task of volume representation by a fraction of the data. In the following we give
an overview of possible competitors and argue why we do not compare them to
our method:

Isosurface methods require a user input to specify the density which deter-
mines an isosurface. The result is dependent on and yields only structures
defined by this choice. Our method processes data automatically and delivers
surfaces of more than just one isolevel.

The “distance to closest boundary” method, as introduced by Kindlmann
and Durkin [6] yields an opacity transfer function for boundary emphasis.
The algorithm performs a statistical analysis of the zero, 1st, and 2nd order
derivatives in the direction of the gradient, providing information on which
densities contribute most to boundaries. Defining a salience function based
on density is essentially inconsistent with our approach, which is position
based, and a comparison would be hardly possible.

Density distribution analysis based on all eigenvalues of the Hessian as pro-
posed by Frangi et al. [1] or Sato et al. [15, 16] restricts the search space
just to structures of a particular shape and a certain scale, and excludes
boundaries of objects. In contrast, our approach handles both boundaries
and structures in a uniform way.

In our previous work [2] we suggested taking into account also areas featur-
ing high magnitudes of the largest eigenvalue λ1. The maxima of this eigen-
value correspond to outer parts of objects’ boundaries and do not contribute
to the output significantly.

3 Implementation and complexity

3.1 Hessian matrix versus gradient vector

Computation of both the gradient vector and the Hessian matrix at grid points
involves an approximation of the first and the second partial derivatives, respec-
tively. For this task, convolution of the data with kernels designed for a particular
derivative in a specific direction is usually employed.

For the first derivatives, kernels of size up to three are usually found in the
textbooks: Roberts, Prewitt and Sobel filters are feasible for fast computation.

The Hessian matrix requires an estimation of 2nd order derivatives which is,
especially for small kernels, much more sensitive to noise. The usual practice is
to pre-smooth the input data with a Gaussian filter. Due to the associativity of
convolution, the smoothing step and the derivation can be combined, resulting in
a convolution of the data with a derivative of the Gaussian filter of a bigger size.
The second reason to use the derivatives of the Gaussian filter is that we want
to detect features represented at a certain scale. The Gaussian filter is the only
filter which meets both the minimum-maximum principle and scale invariance
necessary for such a representation. For more details on scale spaces we refer the
reader for instance to Jähne [5].
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To remain consistent for comparison of both the quality of results and the
computational costs we used filters of the same size both for 1st and 2nd deriva-
tives. Using the Gaussian filter requires that its size k is proportional to the
standard deviation, so the kernels usually involved are 5, 7, or 9 voxels wide. Con-
volution with moderately–sized kernels is usually a computationally expensive
process. To speed it up, hardware features can be used for specific platforms [3,
4]. For a software implementation, the separability of the Gaussian derivative
kernels can be exploited:

( k×k×k︷ ︸︸ ︷
∂o

∂xa∂yb∂zc
Gσ(x, y, z)

)
∗ I =

k×1×1︷ ︸︸ ︷
da

dxa
Gσ(x) ∗

( 1×k×1︷ ︸︸ ︷
db

dyb
Gσ(y) ∗

( 1×1×k︷ ︸︸ ︷
dc

dzc
Gσ(z) ∗I

))
(4)

where nonnegative integers a + b + c = o ∈ {1, 2} determine the order of
derivation, and σ is the standard deviation of the Gaussian filter Gσ(x) =
exp(− x2

2σ2 )/
√

2πσ. The decomposition according equation (4) reduces the over-
head, for a partial derivative at a grid point, from convolution with a 3D kernel
(complexity O(k3)) to three convolutions with a 1D kernel (complexity O(3k)).

A direct application of equation (4) would require 18 1D convolutions for
Hessian elements as compared to 9 1D convolutions for the gradient vector.
Further speed-up can be achieved by appropriate reorganization and caching.
Three 1D convolutions can be saved for the computation of the Hessian matrix,
(e.g., Gσ(x)∗I can be reused three times and G′

σ(x)∗I twice) and one convolution
can be saved for the gradient (e.g., Gσ(x) ∗ I can be reused twice). This reduces
the number of required 1D convolutions to 15 for the Hessian and 8 for the
gradient.

3.2 Eigenvalues of the Hessian versus magnitude of the gradient

While computing the gradient magnitude by the Euclidean norm requires three
multiplications, two additions and one square root, the computation of eigenval-
ues of the Hessian matrix is more complex. The explicit formula would require
solving cubic polynomials. In our implementation we used a numerical solution
– the fast converging Jacobi’s method as recommended by Press et al. [12] for
real-valued, symmetric matrices.

Table 1 summarizes the overall costs concluding that the computation of
eigenvalues is, as compared to the computation of the gradient magnitude, in
average 2.7 times more expensive.

3.3 Construction of representative subsets

To build the subsets Γ (p) and Λ(p), we firstly construct cumulative histograms
of quantities ||∇|| and −λ3, respectively, in one pass through the volume in linear
time. The required percentage p controls the number of voxels to be included
into the respective subset. The search for adjacent histogram bins straddling this
number is logarithmic. The indices of bins correspond to a threshold which is
used as a decision function.
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Input Volume T||∇|| T(λ1,λ2,λ3) factor
Data set Dimensions 8 ∗ +norm 15 ∗ +Jacobi

Lobster 120 × 120 × 34 3.37 3.43 6.30 8.69 2.53
Vertebra 1 128 × 128 × 74 8.52 8.69 15.91 24.58 2.83
CT Head 128 × 128 × 113 12.92 13.17 24.20 36.87 2.80
MRI Head 256 × 256 × 109 50.64 51.60 93.36 141.98 2.75
Engine Block 256 × 256 × 110 50.36 51.29 94.05 139.49 2.72
Tooth 256 × 256 × 161 73.49 74.71 137.49 184.35 2.47
Vertebra 2 256 × 256 × 241 109.89 111.96 206.58 275.45 2.46

Table 1. Time in seconds for computing the magnitude of the gradient and the eigen-
values of the Hessian as measured on a Pentium III, 800 MHz. 1D cyclic convolutions
(eq. 4) with kernel of size k = 7 have been used. The meaning of columns from left to
right: name of the data set and its dimensions; time for the computation of all partial
derivatives for the gradient vector, and after Euclidean norm; time for the computa-
tion of all partial derivatives for the Hessian, and after eigenvalues search; the ratio of
overall times for eigenvalues and gradient magnitude.

4 Results

To compare the quality of a volume representation by subsets Γ and Λ from
equation (3), we generated sparse volumes where the density of voxels not pre-
sented in either of the subsets have been set to zero. Such volumes have been
rendered by direct volume rendering provided by the VolumePro architecture
[10]. In the following we refer to Figure 2 and to the project’s web site2.

Lobster: We compared 2, 4, 6, 8, and 10% representations of this data set.
While the legs of the lobster are, due to the line filter, visible and good
recognizable already in Λ(2%), in Γ (6%) they just start to appear. Repre-
sentation by Γ (2%) is insufficient. The differences between Λ and Γ vanish
with increasing percentage. Nevertheless, they are still noticeable between
Λ(10%) and Γ (10%).

Vertebra 1: Neither Γ (2%) nor Λ(2%) provide a good representation, though
there is much more content visible in Λ(2%). Γ (4%) features broken contours
and is approximately on a level of Λ(2%). Λ(4%) and Γ (6%) represent ap-
proximately the same level, but Λ(4%) provides more details and more closed
contours. Λ(6%) is already close to a good representation of the original data
set.

Vertebra 2: Subset Γ (2%) features only high density screws. While the ribs
only begin to appear in Γ (4%), their are better visible already in Λ(2%)
due to a more even distribution of boundary voxels. Γ (6%) yields even less
information than Λ(4%). Λ(6%) is a good approximation of the original data
set.

2 accessible via http://www.cg.tuwien.ac.at/research/vis/vismed/
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Tooth: There are two significant features identified in this data set: a tooth in-
side a surrounding cylinder. The ratio between the number of voxels belong-
ing to either of the features is quite big, and the subsets Γ and Λ contribute
to a large extent to the wall of the cylinder. For this reasons we have noticed
an obvious difference in the appearance of the tooth just by a very small per-
centages. Λ(0.65%) yields more content than the corresponding Γ (0.65%).
Rendering this data set we also have noticed a suppression of the partial
volume effect in Λ data sets. We explain this suppression as a consequence
of representing object boundaries by their inner parts.

5 Conclusion

We introduced a novel approach for the representation of volume data sets by a
subset which contains the salient features. Our attempt is to convey information
contained in two essentially different modalities, the object’s boundaries and the
narrow structures in an easy and uniform way. For this task we employ second
order derivative operators in the directions reaching minimal response.

Compared to the methods based on gradient maxima, our method represents
objects only by the internal side of their boundaries, reducing thus the amount
of necessary voxels.

Looking for the minima of second order derivative yields also a structure
detector proportional to the scale of the derivation operator. In contrast to the
concepts of Frangi [1] and Sato [15, 16] we enforce no shape restrictions, making
no distinction among blob, tubular, and sheet–like structures.

The drawback of our method is a higher computational cost. Computation
of the Hessian’s eigenvalues is approximately 2.7 times more expensive than the
computation of the gradient magnitude.

We evaluated our method and compared it to the gradient method for several
data sets. Due to the results we conclude that our method performs better
than methods based on gradient magnitude. For the same level of quality of
visualization it allows to represent a data set by a reasonably smaller subset. The
possible applications of such an advantageous representation are, e.g., progressive
transmission over the internet and the generation of preview data sets.
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a) original data b) Λ–subsets c) Γ–subsets

Fig. 2. Direct volume rendering of Lobster, Vertebra1, Vertebra2, and Tooth data
sets (a) and their representations due to salience provided by our method (b) and by
detection due to gradient magnitude (c). The Lobster subsets consist of 2.01% voxels of
the original data set, Vertebra1 and Vertebra2 of 4.03% voxels, and the Tooth subsets
of 0.67% voxels.


