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Abstract

In this paper a feature-preserving volume filtering method is presented. The basic idea is to minimize a three-
component global error function penalizing the density and gradient errors and the curvature of the unknown
filtered function. The optimization problem leads to a large linear equation system defined by a sparse coefficient
matrix. We will show that such an equation system can be efficiently solved in frequency domain using fast Fourier
transformation (FFT). For the sake of clarity, first we illustrate our method on a 2D example which is a dedithering
problem. Afterwards the 3D extension is discussed in detail since we propose our method mainly for volume
filtering. We will show that the 3D version can be efficiently used for elimination of the typical staircase artifacts
of direct volume rendering without losing fine details. Unlike local filtering techniques, our novel approach ensures
a global smoothing effect. Previous global 3D methods are restricted to binary volumes or segmented iso-surfaces
and they are based on area minimization of one single reconstructed surface. In contrast, our method is a general
volume-filtering technique, implicitly smoothing all the iso-surfaces at the same time. Although the strength of the
presented algorithm is demonstrated on a specific 2D and a specific 3D application, it is considered as a general
mathematical tool for processing images and volumes.

Categories and Subject Descriptors (according to ACM CCS): 1.3.3 [Computer Graphics]: Feature-preserving
smoothing, derivative and gradient estimation, direct volume rendering, antialiasing, noise filtering.

1. Introduction

There are several research areas, like noise filtering of sig-
nals, image processing, or direct volume rendering, where
the input data is available as a continuous function sampled
at regular or irregular grid points. It is a recurring problem,
how to reconstruct the most important features of the orig-
inal signal from the sampled values. For instance, after dis-
cretization the exact derivatives are not available anymore,
therefore they have to be estimated from the samples.

The traditional approach is convolution-based filtering.
The support of the filter kernels used in image-processing or
volume-visualization practice is usually limited to a narrow
neighborhood. An ideal but computationally impractical re-
construction however would require convolution filters with
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infinite support, like the Sinc filter for function reconstruc-
tion. A consequence of the local support is for example the
staircase aliasing in direct volume rendering. Even if some
low-pass filtering is used it remedies the problem only lo-
cally since the voxels far away from a given voxel do not
have an effect on its estimated gradient. The global influence
can be ensured using iterative methods but they are rather
time-consuming and restricted to binary volumes !!- 12,

Our goal is to develop a global smoothing method, where
each sample has an influence on all the others, but samples
far away from each other interact only very slightly. We want
to obtain smooth homogeneous regions but also achieve a
preservation of important features. Sharp edges of an image
or well defined iso-surfaces in a volumetric data set have to
be retained.

First our method is illustrated on a 2D example which
is a dedithering problem. Afterwards we discuss the 3D
extension and its major application field which is feature-
preserving volume filtering. In Section 2 we overview the
previous work that has been done in 3D feature reconstruc-
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tion. Section 3 presents in detail the mathematical back-
ground of our new method. Section 4 discusses the 2D case
and its application in image processing. Section 5 describes
the extension to 3D volumes and the adaptation for direct
volume rendering of binary and gray-scale data sets. In Sec-
tion 6 the contribution of this paper is summarized.

2. Previous work

Function and derivative reconstruction from sampled val-
ues is a fundamental problem in computer graphics. One re-
search direction is interpolation oriented assuming that ac-
curate samples are available. The Sinc and Cosc functions
are considered as ideal interpolation and derivative filters re-
spectively 8 9. For a practical use of the Sinc filter window-
ing is suggested 0. Moller et al. ! give a survey of existing
digital derivative filters and compare their accuracy analyt-
ically. These derivative reconstruction techniques based on
windowing are local methods as for practical reasons only
a limited number of neighboring samples are taken into ac-
count.

Another approach for derivative reconstruction is approx-
imation oriented. Here it is assumed that the sampled func-
tion is noisy, which is typical when some real physical prop-
erties are measured. The basic idea is to estimate the incli-
nation or the normal from a larger neighborhood. In order
to reduce staircase aliasing several methods were proposed
for normal computation especially in binary volumes 23 4.
Contextual shading techniques try to fit a locally approx-
imating plane 5 or a biquadratic function 7 to the set of
points that belong to the same iso-surface. These methods
are time-consuming and limited to a certain neighborhood.
Bryant and Krumvieda 3 solve a set of linear equations by
Gaussian elimination in order to obtain an approximate tan-
gent plane at a given surface point. Webber’s technique ¢ 7
is similar to . In a 26-neighborhood the surface is approx-
imated by a biquadratic function producing accurate results
for objects with C ! continuous faces. Neumann et al. 16 lin-
early approximate the density function itself using a 3D re-
gression hyperplane. Their approach leads to a computation-
ally efficient convolution operation. The common drawback
of these approximation techniques is the local influence of
the neighboring samples. It is rather easy to define cases,
where staircase aliasing still appears in the generated image
even if some more sophisticated local gradient estimation is
applied.

A rather new research direction is based on distance-
transformation methods !4, Sramek '# proposes a vox-
elization method, where the generated volume contains den-
sities proportional to the nearest distance from an analyti-
cal surface. Smooth distance maps created also from binary
volumes 13 can be exploited in gradient estimation. Gibson
T uses an iterative method based on this idea. Her “elas-
tic surface net” creates a globally smooth surface model
from binary segmented volumes. Staircase artifacts can be

eliminated also using shape-based interpolation calculating
smooth 2D distance maps 5. The main disadvantage of dis-
tance transformation is its limitation to binary segmented
volumes or to iso-surface-oriented applications.

Whitaker’s 12 approach is similar to Gibson’s ! method
but an iteration is performed directly on the volume without
generating an intermediate triangular mesh. His technique is
also restricted to binary data sets.

In contrast, our method is a general tool for filtering bi-
nary and gray scale volumes, making all the iso-surfaces
smoother at the same time. Unlike convolution-based filter-
ing, the smoothing effect is global due to a global curvature
minimization. Feature preservation is the main characteristic
of our novel filtering approach. By globally penalizing large
gradient deviations important features and fine details like
edges or iso-surfaces are preserved.

3. The new filtering algorithm

The input data is given as a noisy n-dimensional function
f sampled at regular grid points. We want to generate a fil-
tered function f with reduced noise and preserved features.
The discrete samples are denoted by f; and f; respectively.
We assume that the original function f contains continuous
and smooth features as well as discontinuities. Our method is
based on a quadratic penalty function E. Given N samples f
we are looking for N unknown samples f; which minimize
the penalty function. E is defined so that feature preserva-
tion and smoothing is simultaneously possible. For reasons
of simplicity we illustrate the method first for the 1D case.
Penalty function E consists of the following three compo-
nents summed over every sample point i:

e difference squared between filtered value f; and original
value f;. This term ensures that the original values f; are
closely approximated by the filtered values f;.

o difference squared between the gradients of the filtered
value f; and the original value f;. This term ensures fea-
ture preservation which means gradient preservation. In
areas of high gradient magnitude the gradient of filtered
function f must closely follow the gradient of f. Other-
wise a large unwanted contribution to penalty function
E results. Filtered function f will be a smooth function
therefore central differences ((fiy1 — fi_1)/2) are suffi-
cient to approximate the gradient of f. This is not the
case for data values f; which might result from a binary
or noisy function f. Using central differences to estimate
the gradient of function f, would induce f to follow stair-
case or noise artifacts in f instead of approximating the
true underlying gradient of f. The gradient at f; is there-
fore approximated with g; which is calculated according
to a more sophisticated gradient-estimation scheme (Ap-
pendix 8.1.)1°. The derivative function g is based on linear
regression and contains only locally-reduced staircase ar-
tifacts. Additionally the gradient differences between f;

(© The Eurographics Association 2002.
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and f; are multiplied by a weighting factor G which de-
termines the impact of feature preservation on the penalty
function E.

e the squared curvature of the filtered function f. To achieve
smoothing we are looking for a function f with small
overall curvature. The curvature at point i is approximated
by the difference between the gradient at point i (approx-
imated by fiy1 — f;) and the gradient at point i — 1 (ap-
proximated by f; — fi_;). This term is multiplied by a
weighting factor § which determines the importance of
smoothing.

In the 1D case the penalty function E therefore has the
following structure (the second term is multiplied by 4 in
order to simplify the further mathematical derivation):

E=Y[(Ji- )+ (M

4-G-[(fiy1 = Fim1) /2 — g+
S+ (Fip1 + fio1 = 27)7).

Using the above curvature and gradient estimation
schemes it is assumed that the values f; represent N num-
ber of replicated samples in an infinite periodical signal,
therefore f; = fi1y. This assumption is necessary, since in
our method, as it will be shown in the further discussion,
a 3D Fourier transform of the original volume will be ex-
ploited. Before we describe how to find filtered values f;
that minimize the global error we shortly discuss several de-
grees of freedom in penalty function E. The weights S and
G determine the relative importance of feature preservation
as opposed to smoothing. The linear regression based gradi-
ent estimation (function g) takes a local neighborhood into
account (Appendix 8.1.). Increasing the size of this neigh-
borhood reduces local staircase artifacts but also increases
smoothing. Noise reduction can be achieved by omitting gra-
dients below a certain threshold. In this case function f does
not try to follow small noise-related gradient variations in
f. Instead of simple thresholding non-linear operations on
gradient magnitudes of g are also possible. By, e.g., em-
phasizing high gradient magnitudes, only the most impor-
tant features are preserved. The minimization of the penalty
function E results in a globally smooth filtered function f
preserving the fine details due to the gradient component.

Since we use non-negative G and S parameters the
penalty function E is a convex quadratic function having a
unique global minimum. At the minimum location the par-
tial derivatives according to all the N unknown values f; have
to be equal to zero, where i =0,1,2,....N—1:

OE(fo, fi, fo, -, Fn—1)/0f; = 0. 2)
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As penalty function E is a quadratic function, the partial
derivatives are linear functions of variables f, Therefore,
having all of these partial derivatives evaluated, a large linear
equation system is obtained with N unknown variables:

A-f:m, 3)

where A is a sparse coefficient matrix, and f is the unknown
vector containing the N samples of the filtered function. Vec-
tor m is derived from the original function samples f in the
following way:

m; = fi —2G- (giy1—gi—1)- “)

Matrix A, derived from the partial derivatives, is defined
by a symmetric point spread vector p:

p= [plap27p37p4ap5} = [S_G7 —48,1+65+2G, _4SvS_G]a

(5)

['p3 pa ps O . p1 p2 ]
p2 p3 pa ps - 0 p
pt p2 p3 b4 - 0 O
A= 0 p1 pp p3 . ps O
. . . . . P4 )23
ps 0 0 p1 p» p3 pa

Lra ps 0 O p1 p2 p3 |

In 1D, the coefficient matrix A is a symmetric circular ma-
trix. At first sight, it seems that the solution of the large equa-
tion system (3) would require tremendous computational
time. One possibility of optimization is to exploit the special
structure of matrix A. Unfortunately, when the minimization
problem is extended to 2D and 3D the coefficient matrix will
not have such a simple structure. In this case, the unknown
vector f contains all the pixels of the unknown image or all
the voxels of the unknown volume. The structure of the co-
efficient matrix depends on the ordering of these elements.
However, matrix A is always a symmetric positive definite
matrix, therefore the inverse exists and it is also symmet-
ric and positive definite. A linear equation system defined
by such a coefficient matrix can be solved by applying the
conjugated gradient method. According to our experience,
in case of § < 50 and G < 50 this matrix was well condi-
tioned ensuring the numerical stability of gradient methods.

As an alternative, we present a fast method for solving the
linear equation in frequency domain. In fact, function m is
calculated by a convolution of the unknown function f with
the kernel p:

5
mi =Y fi_j+3°Pj- (6)
j=1
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Here we assumed that f_| = fy_1, f—2 = fv—2, v = fos
and fN+1 = fi. Because of this assumption, there will be a
slight interaction between the opposite border regions of the
output signal. This interaction can be reduced by adding an
appropriately thick zero extension at the borders.

In the frequency domain the convolution operation is rep-
resented by a multiplication: M(w) = F(®) - P(®). There-
fore, the Fourier transform F' of the unknown vector f can be
calculated as F(0) = M(w)/P(w). In the spatial domain the
multiplication with matrix A is equivalent with a convolution
with kernel p. Similarly, the multiplication with inverse ma-
trix A~ is equivalent with a deconvolution with p, which
can be written as a convolution with a kernel 7/, which is
the inverse Fourier transform of P/(w) = 1/P(w). Such a
deconvolution operation in frequency domain is unambigu-
ous (a division by zero problem does not occur) if there is
a unique solution of the equivalent linear equation system,
which means that matrix A is invertable.

This can be proven in the following way. Matrix A is
derived from the partial derivatives of a convex (G and
S are non-negative parameters) quadratic penalty function.
The penalty function is formally the sum of N number of
(ax + bi)2 terms, therefore the coefficient matrix A can be
written as the sum of diadic products of the corresponding
terms a; - a,-T. Since each term is positive semidefinite, ma-
trix A is also positive semidefinite. It is easy to see that in
case of non-negative G and S parameters the matrix A is not
only positive semidefinite but positive definite, and therefore
it is invertable.

Thus, the unknown function f is calculated as an inverse
Fourier transform of F. Using fast Fourier transformation
(FFT) our filtering algorithm consists of the following steps:

. estimation of gradients g; using linear regression
non-linear operations on the gradient function g

. calculation of function m using the modified g

M = FFT(m) - Fourier transform of function m

. P=FFT(p) - Fourier transform of function p

F = M/P - deconvolution in frequency domain

. f=INVFFT(F) - inverse Fourier transform of F

The second step is optional and can be an arbitrary non-
linear operation on the gradient function g. The 2D and 3D
extension of our method requires 2D and 3D kernel p and m.
The derivation is analogous to the 1D case. Results for p and
m are given in Appendix 8.2.

4. 2D application - Dedithering

In the image-processing literature there are various lo-
cal edge-preserving smoothing methods. Global techniques,
which are similar to our approach, like the snake (active con-
tours) 17:19:18 method or the fotal variation 22! method also
minimize a global penalty function in order to reduce noise
and enhance contours. The first and second order derivative

terms used by these methods are fundamentally different
from the schemes of our method. The global error is min-
imized applying different iterative techniques, and usually
the numerical stability requires an appropriate precondition-
ing. In contrast, our method does not rely on an iterative
solution and does not use any additional (for example La-
grange) constraints, therefore it is fast and numerically sta-
ble.

In order to make the volume smoothing application more
understandable, we illustrate our filtering algorithm on a 2D
example which is a dedithering problem. A binary dithered
image can be considered as a noisy representation of the
original image with significant loss of information. The
problem is how to reconstruct the original features like sharp
edges, smooth homogeneous regions, and fine details from
the binary pixels of the dithered image.

In the 2D penalty function the gradients g(i, j) are esti-
mated using linear regression (Appendix 8.1.). In the second
term of the penalty function (weighted by G) the gradients
of the unknown image are defined by central differences:

Feliy j) = [FG+1, ) = fli— 1, ))]/2, N

In the third term of the penalty function (weighted by S)
we use the following quadratic norm of the Hessian matrix
as a measure of the local curvature:

PPt P2+2f2. ®)

The 2D algorithm is analogous to the 1D case. The con-
stant term m in Equation 3 and the convolution kernel p
(defining the coefficient matrix A) are derived from the
Equations 2. The result of the derivation is presented in Ap-
pendix 8.2.

We illustrate the 2D version of our filtering method on
a binary dithered image. A low resolution detail of this is
shown in Figure 1a. For the sake of comparison, first we tried
to apply a Gaussian filter to generate a gray-scale image ap-
proximating the original one. We used a rather narrow kernel
(o = 1.5) in order to smooth the homogeneous regions with-
out removing the fine details. Figure 1b shows the result of
the Gaussian filtering.

Figure 1c shows an image generated applying our feature-
preserving filtering. We used parameter settings G = 10 and
S = 24. Note that, compared to the Gaussian filtering the
high frequency details are well preserved. There are also
some clearly visible details which are hardly recognizable
even by the human eyes when you take a look at the dithered
image in Figure 1a.

(© The Eurographics Association 2002.
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(a) (b) (©
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Figure 1: (a) The original binary dithered image. (b) Gaussian filtering. (c) Feature-preserving filtering.

Figure 2: The middle slice of the equivalent convolution kernel P using varying parameter settings: (a) S =0, G =1, (b) § =

1,G=1()S=1G=0.

5. 3D application - Volume filtering

In this section we discuss how to extend our method to the
3D case and how to apply it for feature-preserving volume
filtering. Each gradient value g(i, j, k) is estimated using lin-
ear regression (Appendix 8.1.).

In the 3D penalty function E the gradients in the filtered
volume are approximated by central differences. The gradi-
ent component of E (weighted by G) is extended to 3D as
follows:

G[(fNX(lvak)_g’C(lvak))2+ )

(fV(lvak) _g.\’(ivjvk))2+
(ﬂ(la17k) _gz(iaj7k))2}'

The curvature term of E (weighted by S) can be extended
to 3D using finite differences to approximate the following
formula:

P fo+ ot (10)
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Note that, the derived linear equation system (3) contains
as many unknown variables as the number of voxels which is
256> fora typical data set. Fortunately, due to the deconvolu-
tion performed in frequency domain, the optimization prob-
lem can be efficiently solved. The 3D filtering algorithm is
analogous to the 1D case. Appendix 8.2. presents the derived
constant term m of Equation 3 and the 3D kernel p used for
the deconvolution in Step 6.

In order to illustrate the global behavior of our method we
calculated the equivalent convolution kernels which have to
be applied for the modified volume m to obtain the same re-
sults. The Fourier transform P’ of the equivalent kernel p
contains the reciprocals of the coefficients in P. Therefore,
kernel p' can be easily calculated as the inverse transform of
P'. Figure 2 shows the middle slice of p’ evaluated for vary-
ing S and G parameters and rendered as gray-scale images.
The filter values are non-linearly overemphasized in order
to visualize also the low weights. Note that, if weight G is
dominant then the kernel is similar to a Gaussian filter while
setting a dominant S weight the kernel is getting similar to a
Sinc function. In fact, the images in Figure 2 depicting con-
volution kernels in the spatial domain, represent the inverse
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of the coefficient matrix A in Equation 3. Such an equivalent
convolution kernel exists if a non-linear operation in the 2.
step of the algorithm is not applied. Since this is a crucial
step of the algorithm, in general it is not possible to substi-
tute our method with a simple convolution-based filtering.

Parameter S controls the smoothing of iso-surfaces and
parameter G is responsible for preserving the fine details
in the volume. Figure 3 shows a very low-resolution (64 x
64 x 32) artificial binary volume which contains several dis-
cretized objects. This binary data set was filtered using vary-
ing S and G parameters. The higher the parameter G is,
the better the estimated gradients g(i, j, k) are approximated.
Since linear regression using a larger voxel neighborhood re-
sults in a smooth gradient function an increased G has also
a local smoothing effect. This effect is controlled by the ra-
dius r of the considered neighborhood and the spherically
symmetric weighting function. Here the gradients g(i, j, k)
were estimated from a 26-neighborhood weighted by 1/ &L,
where d is the Euclidean distance of a neighboring voxel
from the current voxel. In a special case gradient estimation
based on linear regression provides the same results as cen-
tral differences, making the local smoothing effect minimal
(Appendix 8.1.). Gradients approximated from such a nar-
row voxel neighborhood are preferred when also voxel-size
details are required to be preserved.

Increasing parameter S the global smoothing effect is get-
ting stronger because of the weighted curvature minimiza-
tion. In case of G = 0 and S >> 0 the results approximate
only very roughly the original surfaces, and small details are
removed. This can be compensated by setting a higher value
of G. Figure 3 illustrates how these contradictory conditions
fight each other. Generally, the appropriate parameter setting
is always a compromise, depending on whether one wants to
emphasize small details or rather to enhance smooth charac-
teristic surfaces.

For the sake of comparison, Figure 4 shows the rendering
of the original binary volume (a) and the filtered volume (b).
In order to make the surfaces smoother and to preserve the
small details at the same time, we used parameters G = 3
and S = 3.

Figure 5 shows a gray-scale data set of a lobster filtered
using varying S and G parameters. Figure 6 compares the
images of the original and the filtered data generated with the
same rendering conditions. For the filtering, we used S = 3
and G = 12 in order to preserve small details like the feeler
of the lobster.

We tested our method also using a more complex trans-
fer function emphasizing two different density ranges at the
same time. Figure 7 (see color section) shows the rendering
of a human body using the original CT data set (a) and the fil-
tered volume (b). The test data set is rather noisy and it con-
tains contrast material in the blood vessels having nearly the
same densities as the bone. Therefore, an appropriate trans-
fer function has to be very fine tuned in order to render the

vessels separately from the bone. Figure 7a shows an image
rendered using the original data set. Note that, the final im-
age contains point like noise and typical staircase artifacts. In
order to remedy these problems we filtered the volume with
parameters G = 1 and S = 1. We also applied a threshold
cutting according to the gradient magnitudes for noise re-
duction. The entire filtering process took 8 minutes for such
a 202 x 152 x 255 resolution volume on an 800 MHz Pen-
tium PC with 512M RAM. Figure 7b shows the visualization
of the filtered volume using the same rendering parameters
as for the original data. Note that the details are well pre-
served and the iso-surfaces are much smoother. The point
like noise is also significantly reduced.

Figure 7 also illustrates that our method is basically
a volume-filtering method making all the iso-surfaces
smoother inside the volume and it is not restricted to one
single iso-surface like the previous global smoothing tech-
niques.

6. Conclusion

In this paper a feature-preserving volume filtering method
has been presented. With a three-component penalty func-
tion, approximation of the original values, feature preser-
vation and curvature minimization can be controlled effi-
ciently. Images generated by direct volume rendering from
the filtered data contain only reduced point like noise and
staircase artifacts. Furthermore, the sampled smooth sur-
faces and fine details can be reconstructed at the same
time. Unlike local convolution-based filtering techniques,
our method provides a global smoothing effect because of
the global curvature minimization. The scalability is ensured
by the weighting parameters of the three-component penalty
function. Due to the applied FFT method filtering is per-
formed efficiently. Our approach is not restricted to binary
data or segmented iso-surfaces, unlike previous techniques
based on iterative solution. Although the presented filtering
algorithm has been illustrated on a specific 2D and a spe-
cific 3D example it can be considered as a general math-
ematical tool usable for image or volume-processing pur-
poses. Among the possible 2D application fields we mention
feature-preserving smoothing or zooming, image restora-
tion, and terrain-modeling. In the 3D case, our technique is
applicable to gradient-driven or shape-based interpolation,
and smoothing of binary segmented masks.
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S=6

Figure 3: A binary volume filtered with varying S and G parameters.

(b)
Figure 4: Rendering of a 64 x 64 x 32 binary volume using the original (a) and the filtered (S = 3, G = 3) data (b).
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8. Appendix
8.1. Gradient estimation using linear regression

Derivatives of a 1D sampled function f(x) can be estimated
using a simple linear regression method '°. According to this
approach a linear function a - x4 b can be determined, which
approximates locally the original function f(x) with a min-
imal error. The value of a is considered as an estimated lo-
cal derivative. Let w(i) be a symmetric weighting function,
where w(i) = w(—i) and w(i+ 1) < w(i) if i > 0. Weighting
the error contribution of the neighboring samples by func-
tion w(i) the error optimization leads to the following gradi-
ent estimation formula:

) = — N )i fti
f(X)—Ziw(i).iQEi: (8)-i- flx+1). an
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This method can be easily extended to 2D and 3D gra-
dient estimation. In 2D, denoting the sampled function as
f(x,y) and the symmetric weighting function as w(i, j) the
estimated gradient components are calculated the following
way:

felxy) = flx+iy+)), (12)

2 lZEW ’J

1
Sl ) 7 2 ) i iy ),
i,j WAL i

w(—i,—j) and w(i, j) < w(k,l) if * + j> >

fY(xvy) =

where w(i, j) =
12+ 12,

The 3D gradient estimation formulas are analogous to the
2D case:

fx(x,w)fw 5 Y w(iyj,k) i fx+i,y+j,2+k), (13)
i,k

f\’( ay7 - a]7 .] f(x—l—l,y—i-],z—l—k)

fe(x,3,2) = (i, ), k) k- f(x+1i,y+ j,z+k),

ijk

where W =3%; ;¢ w(i, j, k). In fact, these gradient estimation
schemes define kernels for computationally efficient convo-
lution. The convolution is evaluated only for those neigh-
boring samples, where the weighting function w is greater
than zero. The weighting function controls the smoothness
of the estimated gradient function. The wider the considered
neighborhood is the stronger is the local smoothing effect.
For instance, in 3D the classical gradient estimation based
on central differences is a special case of the linear regres-
sion method using the following weighting function:

lifi={1,-1},j=0,k=0
ori=0,j={1,—-1},k=0
ori=0,j=0,k={1,-1}
0 otherwise.

w(i, j,k) = (14)

In this special case the local smoothing is minimal since just
a narrow voxel neighborhood is taken into account.

8.2. The 2D and 3D convolution kernels

In the 2D case, the convolution kernel p derived from Equa-
tions 2 is defined as the following 5 x 5 point spread matrix:

s 3 S
g 0 KS_G 0 8
0 0 —45 0 0

p=| 35-G —4S 1+4G+1255 —45 35-G
0 0 —45 0 0
S 3 )
5 0 735—-G 0 8

The 2D function m(i, j) in Equation 3 is calculated simi-
larly to the 1D case:

m(i, j) = f(i, j)— (15)
26 - [(gx(i+1,j) —gxli= 1, j)+
gy(i,j+1) = g(i,j—1)].
In the 3D case, the derived convolution kernel p is a 5 x
5 x 5 volume. Let us denote the ith slice by p;. Because of

the symmetric kernel p; = ps and py = p4. The slices are
defined by the following matrices:

00 35 00
00 0 00
p=1|3 0 5-G6 0 § |,
00 0 00
S
00 § 00
00 0 00
00 0 00
p=|0 0 —45 0 0|,
00 0 00
00 0 00
S S S
0 0 —48 0 0
p3=| 5—G —45 1+6G+19.55 —4S 5-G
0 0 —4S 0 0
S S S
$ 0 §-G 0 §

The constant term m(i, j, k) in Equation 3 is analogous to
the 2D case:
m(lvjak) = f(iaj7k)_ (16)
ey(i,j+ 1L,k)—gy(i,j—1,k)+

gz(iajak+l)_gz(iaj7k_ 1)}
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Figure 8: Direct volume rendering of a human body using the original (a) and the filtered (S = 1, G = 1) data (b).

(© The Eurographics Association 2002.



