
Fast Oriented Line Integral Convolution for Vector Field Visualization via
the Internet

Rainer Wegenkittl and Eduard Gr¨oller

Institute of Computer Graphics, Vienna University of Technology�

Abstract

Oriented Line Integral Convolution (OLIC) illustrates flow fields
by convolving a sparse texture with an anisotropic convolution ker-
nel. The kernel is aligned to the underlying flow of the vector field.
OLIC does not only show the direction of the flow but also its ori-
entation. This paper presents Fast Rendering of Oriented Line In-
tegral Convolution (FROLIC), which is approximately two orders
of magnitude faster than OLIC. Costly convolution operations as
done in OLIC are replaced in FROLIC by approximating a stream-
let through a set of disks with varying intensity. The issue of over-
lapping streamlets is discussed. Two efficient animation techniques
for animating FROLIC images are described. FROLIC has been
implemented as a Java applet. This allows researchers from various
disciplines (typically with inhomogenous hardware environments)
to conveniently explore and investigate analytically defined 2D vec-
tor fields.

CR Categories and Subject Descriptors:I.3.3 [Computer Graph-
ics]: Picture/Image Generation - Viewing Algorithms; I.3.6 [Com-
puter Graphics]: Methodology and Techniques - Interaction Tech-
niques.

1 Introduction

Texture based techniques for the visualization of flow fields have
been investigated in detail in recent years. Examples are, e.g., [1],
[9], [11] and [17].

Van Wijk [17] explores stochastic texture synthesis to visualize
scalar and vector fields. A spot noise texture is constructed by
adding randomly weighted and positioned spots. Spot noise is a
versatile technique where characteristics of the spot are intuitively
transfered to characteristics of the spot noise texture. Varying the
shape and features of the spot locally enables a local control of the
texture. A flow field can be visualized by taking elongated ellipses
as spots. The larger axes of these spots are, for example, aligned
with the locally varying flow direction. The result is an anisotropic
texture which depicts the entire flow field and does not distract the
viewer with larger geometric features. The anisotropy of the tex-
ture manifests itself by a high correlation along the direction of
the flow and a low correlation perpendicular to the flow. The spot
noise technique can be thought of as filtering an isotropic texture
(e.g., white noise) with a locally varying filter kernel. The shape
and properties of the filter kernel encode local features, e.g., direc-
tion and velocity magnitude, of the underlying flow field. This is
typically achieved by aligning the convolution kernel to the tangen-
tial direction of the flow. Four improvements and extensions to the
spot noise technique are discussed in [4]. Spots are bent to bet-
ter approximate the underlying flow. Filtering is done to eliminate
undesired low frequency components from the spot noise texture.

�Institute of Computer Graphics, Vienna University of Technol-
ogy, Karlsplatz 13/186/2, A-1040 Vienna, Austria email:fwegenkittl,
groellerg@cg.tuwien.ac.at

Graphics hardware methods for the acceleration of the spot noise
texture generation are discussed. Furthermore the synthesis of spot
noise on grids with irregular cell sizes is presented. Spot noise has
also been utilized to visualize turbulent flow patterns [3].

Cabral and Leedom [1] introduced the Line Integral Convolu-
tion (LIC) method. In their approach filtering of a white noise input
texture takes place along (curved) streamline segments. LIC uses
one-dimensional filter kernels which are determined by integrating
the underlying vector field. The intensityI(x0) at an arbitrary po-
sitionx0 of the output image is calculated by

I(x0) =

Z
s0+sl

s0�sl

k(s� s0)T (�(s))ds;

where T is the input texture,�(s) is the parameterized streamline
throughx0 (x0 = �(s0)) and k() describes the convolution kernel.
sl specifies the length of the streamline segment used in the filter
operation. The texture values along the streamline segment�(s),
(s0 � sl � s � s0 + sl), are weighted with the corresponding
kernel valuesk(s� s0). They are accumulated to give the intensity
I(x0) at positionx0. Various kernel functionsk() can be used in
the filter operation. For single images a constant filter kernel gives
a good impression of the flow direction. Taking periodic low-pass
filter kernels and phase shifting these kernels in successive images
allows to animate the flow field. The animation shows flowing rip-
ples which also encode the orientation of the flow.

Forssell [6] extended the Line Integral Convolution method to
curvilinear grid surfaces. Calculations are done on a regular carte-
sian grid in computational space, whereas the results are displayed
on curvilinear grids inphysical space. Animating (i.e., phase shift-
ing) the convolution kernel with constant kernel length in computa-
tional space produces distorted and misleading flow visualizations
in physical space. This is due to a usually nonlinear mapping be-
tween computational space and physical space. The problem is
overcome by adapting the length of the convolution kernel locally.
Speed encoding is achieved by changing the amount of the phase
shift of the convolution filter according to the locally varying ve-
locity of the vector field.

Calculating a LIC image is a rather time consuming task.
Stalling and Hege [14] reduced calculation times considerably by
exploiting coherence properties. Given a simple (constant) convo-
lution kernel k(), the difference in intensityI(x0)�I(x1) of two ad-
jacent positionsx0; x1 on the same streamline can be calculated by
an easy incremental update operation. The computation order is not
pixel-per-pixel as in [1] but streamline oriented. This gives an order
of magnitude speed-up with the drawback of allowing only simple
convolution kernels. Additionally Stalling and Hege’s method al-
lows to zoom into a specific area of the input texture. Thus the
input texture and the resulting image do not have to be of the same
resolution.

Kiu and Banks [8] use Line Integral Convolution with multi-
frequency noise texture. The locally varying magnitude of the vec-
tor field determines which frequency components are selected and
integrated into a multi-frequency noise image. Areas with high ve-
locities are represented by a noise function with lower spatial fre-



quency. Further texture based techniques are described, e.g., in [2],
[10], and [13].

The variations of the Line Integral Convolution method pre-
sented so far do not encode the orientation of a flow within a still
image. In section 2 Oriented Line Integral Convolution (OLIC)
[16] is described, which overcomes this disadvantage. Section
3 discusses a new technique for Fast Rendering of OLIC images
(FROLIC). Section 4 investigates the design of sparse textures for
FROLIC. Animation aspects are described in section 5. The internet
offers great potential of allowing various users in a heterogeneous
setup to use the same visualization software. Section 6 deals with
a Java implementation of the FROLIC algorithm. Finally in section
7 some conclusions are given and future work is outlined.

2 Oriented Line Integral Convolution
(OLIC)

Figure 1:Two streamlines with equal direction but opposite orientation

LIC images encode flow direction and velocity magnitude, but
they do not show the orientation of the flow in still images. Figure 1
shows two streamlines with equal direction but opposite orientation.
LIC does not distinguish between these two cases. Flow orientation
can be illustrated through animation. But there are cases where only
still images are available or necessary, e.g., reproduction of vector
fields in books or journals.

Furthermore LIC images are characterized by high spatial fre-
quencies normal to the flow. This gives a good impression of the
overall vector field, but is susceptible to aliasing problems in case
an image has to be manipulated like, e.g., resized or printed. Ori-
ented Line Integral convolution (OLIC) [16] was designed to show
the orientation of a flow even in still images and it is not as much
prone to aliasing effects as LIC. There are two major differences
between LIC and OLIC. LIC images typically use dense noise tex-
tures wheras OLIC utilizes only sparse textures. A sparse texture
can be thought of as a set of ink droplets which are thinly distributed
on a sheet of paper. The vector field smears these ink droplets but
the ink droplets are so far apart from each other that blurred traces
of droplets usually do not overlap. The second difference between
LIC and OLIC is that OLIC uses asymmetric convolution kernels
(figure 2). A ramp-like kernel as in figure 2 produces traces of
droplets with intensity variation along the streamline. As a sparse
texture is taken traces do not overlap very much and the orientation
of the flow is visible in still images.

In figure 3 the difference between LIC and OLIC is clearly visi-
ble. Figure 3(a) shows the LIC image of a circular flow but it is not
recognizable if the flow is in clockwise or counterclockwise orien-
tation. Figure 3(b) shows the OLIC image of a circular clockwise
flow and figure 3(c) shows the OLIC image of a circular counter-
clockwise flow. The additional information in the OLIC image is
gained at the expense of spatial resolution.

The initial positions of the droplets in the sparse texture must be
selected carefully to avoid the formation of undesirable patterns in
the OLIC image. In [16] the droplets are positioned on a regular
grid. Additionally these positions are slightly jittered. If the dis-
tance between droplets is too large a lot of flow information is not

(a)

(b)

(c)

Figure 3:LIC image (a), OLIC images for two flows with opposite orientation (b),
(c)

depicted in the result image. On the other hand if the droplets are
too close to each other, many traces will overlap. If the overlap-
ping is too extensive the orientation is not clearly visible any more.
Section 4 investigates the placement of droplets in the input texture.

OLIC allows to encode flow velocity by the length of the traces
of individual droplets. The animation of OLICs can be achieved
by simply phase shifting the convolution kernel for each frame of
the animation sequence. The phase shift is adapted to the length of
the trace of a droplet. Short traces have small phase shifts and long
traces have large phase shifts. Initially each droplet is assigned a
random phase shift (offset) to avoid synchronization artefacts. In
[16] OLIC images are calculated pixel by pixel. In a precalcula-
tion step areas of the result image which are not affected by any of
the droplets can be determined and skipped in the following convo-



convolution kernel

N
convolution

ink droplets

streamlines

resulting trace

Figure 2:Sparse texture and ramp-like kernel-function for OLIC

lution process. Despite this optimization the calculation of OLIC
images is quite slow and comparable to the cost of calculating LIC
images. In section 3 a fast approximative calculation of OLIC is
presented.

3 Fast Rendering of OLIC (FROLIC)

One characteristic feature of OLIC is the usage of sparse textures.
Usually a sparse texture is made up of constant intensity droplets
although one can think of droplets with a different, e.g., gaussian
distributed, intensity function. The distance between droplets is
large enough so that traces of neighboring droplets typically do not
overlap too much. This allows, in combination with the asymmetric
convolution kernel, to illustrate the orientation of the flow. Convo-
lution with a sparse texture is not as difficult as convolution with a
dense texture. This will be now used for Fast Rendering of OLIC
images (FROLIC).

FROLIC calculates an approximate solution to the exact con-
volution result of OLIC thereby achieving a considerable speed-up.
With a sparse texture the convolution at a specific point of the result
image involves at most one single droplet. Each droplet produces a
trace with intensity increasing from tail to head. Due to the circu-
lar shape of a droplet the intensity varies slightly along the breadth
of a trace as well (figure 4(a)). As a trace is rather small FROLIC
approximates the shape of a trace by a set of small, possibly over-
lapping disks (figure 4(b)). The disks are positioned along a short
portion of a streamline. Each disk has constant intensity, but the
intensity varies between adjacent disks. If n disks are taken to ap-
proximate a trace then intensity increases in n discrete steps from
tail to head of the trace. The intensity of adjacent disks is increas-
ing to simulate the continuous ramp kernel of the OLIC method.
Although being an approximative variant of a LIC-type algorithm,
FROLIC is also somewhat in the spirit of iconic vector field rep-
resentations. Such approaches are, e.g., spot noise [17], surface
particles [18], and particle traces on 2D surfaces [11].

The FROLIC calculation is done as follows: for each droplet a
short streamline portion is calculated by integrating the underlying
flow field. The length of a streamlet indicates local flow velocity.
The smallest and largest velocities in the vector field are assigned
specific streamlet lengths, intermediate velocity values are linearly
interpolated. A prefixed number of disks is positioned in regular
intervals along a streamlet. The processing order is from tail to
head of the trace, i.e., darker disks are drawn first and might be

(a)

(b)

Figure 4:Exact trace of a droplet with OLIC (a) and approximatedtrace of a droplet
with FROLIC (b)

partially occluded by brighter disks which are drawn later on. In
our approach the number of disks positioned along a streamlet is
independent from the length of the streamlet. This allows an easy
animation algorithm as described in section 5.

The main advantage of FROLIC as compared to OLIC is that
drawing disks is much faster than doing a costly convolution cal-
culation. Instead of calculating the result image pixel per pixel as
OLIC does, only the rather small set of droplets has to be processed.
In an image with resolution of 600x600 about 1000 droplets are suf-
ficient. Furthermore drawing simple geometric primitives like disks
can be done with hardware support. During experiments we found
that the approximation error introduced by the FROLIC method is
well justified by the efficiency gain. The calculation time for the
FROLIC images in figures 5(b) and 6(b) is about two seconds on



a Pentium 100Mhz PC. Investigations show that FROLIC (without
hardware supported rendering) is approximately two orders of mag-
nitude faster than OLIC. Figures 5 and 6 give a comparison between
OLIC and FROLIC images. The images were calculated with a res-
olution of 600x600. The calculation of the FROLIC image in figure
5 was 295 times faster than the corresponding OLIC image. In fig-
ure 6 the speed-up was 170. The difference in the speed-up factors
is mainly due to the longer streamlets in figure 5 which are more
costly to calculate with OLIC than with FROLIC.

OLIC is independent from the specific texture, whereas the cost
of FROLIC depends on the number of droplets. Increasing the ker-
nel length increases the cost of both methods. In this case OLIC
has to convolve the texture with a larger streamline portion and
FROLIC has to draw more disks for each streamlet. The radius of
the droplets has no effect on the OLIC calculation, while it slightly
influences the FROLIC performance. This is due to the fact that
larger disks have to be drawn in this case. A slight performance
degradation happens with FROLIC when the resolution of the out-
put image is increased. A larger image resolution, on the other
hand, slows down the OLIC calculation considerably. Speed en-
coding influences the OLIC performance, as the length of stream-
lets (and therefore the convolution cost) may vary to a great degree
between different flow fields. This is not the case with FROLIC as
the number of disks drawn for each streamlet is independent from
its length.

4 Droplet Texture Design

This section deals with the placement of droplets on a sparse input
texture. There are two criteria which should be optimized but which
are opposed to each other. One criterion calls for a dense filling of
the output image with streamlets. This ensures that most of the
vector field information is represented in the output image. The
second criterion is that overlapping streamlets should be avoided as
far as possible in order to clearly illustrate flow orientation.

Finding an optimal droplet distribution in the input texture so
that a tight packing of streamlets results in the output image is
quite intricate. The optimal texture depends on the underlying vec-
tor field as well as on the chosen minimal and maximal streamlet
lengths. Furthermore changing the position of a droplet hasnon-
trivial consequences concerning the induced streamlet. The stream-
let may change its length or shape. This complicates filling algo-
rithms which are based on distributing and moving droplets in the
input texture. Another consideration is that the arrangement of the
streamlets should not produce macro structures which are easily
perveived by the human visual system and which disturb the inter-
pretation of the flow data. Such macro structures might result for
example if streamlets are exactly aligned along a specific stream-
line or the alignment of streamlets is such that they form wavefront
patterns.

There has already been work on optimal streamline placement
[7], [15]. Turk and Banks [15] use an energy function to guide the
placement of streamlines. An image with an uneven distribution
of streamlines (in certain areas streamlines are either too crowded
or too sparse) has higher energy than an image with a more even
streamline density. The optimization process decreases the energy
function which approaches a local minimum. The resulting images
look somewhat like elegant hand-designed streamline drawings but
the optimization process itself is quite costly.

Our task deals only with the placement of short streamlets and is
therefore inherently simpler than the streamline placement in [15].
Simple approaches for droplet placement are random distribution
and placement of droplets on a regular orjittered grid. If the dis-
tance of adjacent grid points is in the same order as the maximal
streamlet length then overlapping may occur but is usually not a
severe problem. If overlapping of streamlets shall be avoided en-

(a)

(b)

Figure 5:Econometric data with OLIC (a) and FROLIC (b)

tirely, a distance image is used which has the same resolution as the
final output image. For each pixel the distance image contains the
distance to the closest streamlet drawn so far (figure 7(b),(c)). A
new streamlet candidate is calculated and if it is too close to a pre-
viously drawn streamlet it is discarded. Otherwise the streamlet is
drawn into the output image as a set of disks and the distance image
is updated.

The update operation is based on a rasterized template of the
disk (figure 7(a)). Pixels within the disk have the distance value
zero, other pixels of the template contain the distance to the disk
up to a certain threshold value d. For each disk of the streamlet
the template is pasted into the distance image in a z-buffer fashion.
If a pixel of the output image is now closer to the currently drawn
disk its distance value is modified to the corresponding template
value otherwise it remains unchanged. This approach ensures that
streamlets are not closer to each other than the predefined threshold
value d.

The threshold value d determines the density of streamlets in the
output image. Experiments have shown that a small value of d pro-
duces a dense output image but undesirable macro structures might
occur. If only pixel positions on, e.g., a jittered grid are tested for
possible streamlet placement and overlapping streamlets are dis-



(a)

(b)

Figure 6:Circular flow with OLIC (a) and FROLIC (b)

carded there could be some thinly populated areas in the output
image. In a second pass additional pixel positions are tested for
streamlet placement. The search order in the second pass can be
random, circular starting from the image center, or according to a
Peano curve. The search order should not be too regular, e.g., in
scanline order, so that the danger of macro structures is reduced.

Doing the fill operation in one step without initially placing
streamlets globally, e.g., on a grid, is prone to generating macro
structures. By choosing the threshold value d to be at least three
to four times the perimeter of the streamlets generally avoids the
macro structures. Figure 8 gives a comparison between a FROLIC
with and without overlapping streamlets respectively. The thresh-
old d in figure 8 is small as compared to the streamlet perimeter.
Therefore some macro structures are recognizeable.

5 Animation of FROLIC

Animation of OLIC images is realized by phase shifting the convo-
lution kernel in consecutive frames of the animation sequence (see
section 2). This approach can also be adapted to FROLIC. With
FROLIC a streamlet consists of a set of disks with varying intensity.
These intensities are cycled to convey to the viewer the impression

(a)

(b)

(c)

Figure 7:Rasterized template of a disk (a), two streamlets (b), distance image (c)

of motion. The spatial position of streamlets is not changed. The
starting points of streamlets can be thought of as nozzles which pe-
riodically introduce dye into the flow. This is an Eulerian approach
[12] as opposed to using moving particles, which would be a La-
grangian approach. Moving particles have the disadvantage that de-
pending on the flow field an uneven particle distribution may evolve
quite rapidly. In the following we will discuss two algorithms how
to realize animation of FROLIC images. The first algorithm was
implemented as a Java applet [5] which will be described in more
detail in section 6. The second algorithm realizes FROLIC anima-
tion by color-table animation.

The first algorithm is based on the fact that a linearly increas-
ing intensity function has to be cycled. Each streamlet is again
assigned a random initial phase shift to avoid synchronization ef-
fects. For each streamlet the current position c indicates the disk
with highest intensity. Given frame i of the animation sequence
the following frame i+1 is constructed by reducing the intensity of
all pixels of frame i by a fixed amount. This amount is equal to
the intensity difference between adjacent disks. Frame i+1 is built
from the intensity-reduced frame i by drawing a single disk for each
streamlet. These disks have highest intensity and are positioned at
location (c+1) mod n. n is the number of disks used to represent a
streamlet. Both operations (i.e., intensity reduction and disk draw-



(a)

(b)

Figure 8:FROLIC image (a) with, (b) without overlapping streamlets

ing) together cycle the intensity ramp one disk along the flow.
The human visual system is very sensitive to appearing or disap-

pearing bright spots. This can be a problem for cycling an intensity
ramp along a fixed streamlet, as a bright disk disappears at the end
of a streamline and reappears at the start of the streamline. The
impression of a pulsating effect can be, however, avoided by using
a filter (e.g., Gaussian) which attenuates the intensity at the begin-
ning and the end of a streamlet. As a streamlet is typically made up
of a small number of disks we use in our implementation a simple
filter which initially increases linearly, is constant in the middle por-
tion, and finally decreases linearly. Whenever a new disk is drawn
its intensity is modified with the above filter according to the disk
position.

Color-table animation is the second approach for efficiently an-
imating FROLIC images. With a color table the intensity value
of a pixel is specified indirectly. Each pixel is assigned a short
color-table index which points to a specific entry in the color table.
Available intensities or colors are stored in the color table itself.
Color-table animation changes the entries of the color table instead
of changing the corresponding image. As the color table is only
small in size, e.g., 256 entries, this can be done very fast. The pos-
sibilities of color-table animation are rather limited but sufficient

for animating FROLIC images. Figure 9 illustrates the principle.
A streamlet is initially built by drawing a set of disks. Adjacent
disks are represented by consecutive color-table indices. The color
table holds the intensity ramp, i.e., successive color-table entries
contain increasing intensity values. After this initialization step the
assignment of indices to pixels is not changed anymore. Animation
is achieved by cycling the intensity values in the color table itself
(see figure 9). The random initial phase shift (offset) is realized by
starting each streamlet with a randomly selected color-table index.

There is a problem if the intensity of a streamlet should be ad-
ditionally attenuated at the beginning and end of the streamline. In
this case the intensity of a disk does not only depend on the offset
within the intensity ramp but is also dependent on the spatial po-
sition. This means that a color-table index can not simultaneously
represent a disk in the middle of one streamlet and a disk at the
beginning or end of another streamlet. This situation is handled
by subdividing the color table into non overlapping equal-sized re-
gions. Each region represents all the streamlets with the same initial
phase shift. If, for example, there are 256 color-table entries and
each streamlet is represented by 32 disks then 8 (256/32) different
initial phase shifts can be realized.

We have currently included the first algorithm into our prototype
implementation (see section 6) as successive intensity reductions of
entire images are easily realized in Java. As we can not manipulate
color-table entries within our Java applet, we are currently imple-
menting the color-table animation approach under another software
environment.

Figure 9:Color-table animation for FROLIC, two consecutive frames

6 FROLIC via the Internet

This section describes a prototype implementation of
FROLIC and some other vector field visualization techniques
within a Java applet [5]. The applet can be accessed at
http://www.cg.tuwien.ac.at/research/vis/dynsys/frolic/ .
Over the last years we have been collaborating with researchers
working on analytically defined dynamical systems. Depending
on the professional background, e.g., mathematicians, economists,
the scientists typically have a quite inhomogenous hardware
equipment. Most of these scientists do not have high-end graphics
hardware at their disposal. Therefore it can be difficult to provide
them with visualization tools that are specifically tailored to their
needs.

Internet computing provides a mechanism to offer people
hardware-independent visualization capabilities. The same tech-
niques can be used in different setups without the need to modify
the implementation. Software maintainance and update is no prob-
lem as the latest version is available over the internet. The Java
applet provides some methods to experiment with and investigate
analytically defined 2D vector fields. This gives researchers the



possibility to easily visualize their analytical vector data without
having to use any complex visualization tool.

A 2D vector field is defined by a system of two differential equa-
tions. A fast rendering of the flow behavior of such a system is
crucial to efficiently explore different parameter settings and varia-
tions of a given vector field. As LIC and OLIC produce high qual-
ity images at a high computational cost, FROLIC was developed
to provide an approximative but fast representation of the system
behavior. The user submits among other parameters: the vector
field equations, the area of interest and the resolution of the output
image. During the calculation of a FROLIC image a numerical sim-
ulation of the vector field is done by applying, e.g, Euler or Runge-
Kutta methods. FROLIC images can be calculated with or without
the avoidance of overlapping streamlets. Animations of FROLIC
images are also possible.

Other techniques included in the applet are the following: The
speed of the vector field is encoded in an intensity image. High
intensity areas correspond to high velocity regions of the vector
field. A hedge-hog representation of the vector field illustrates the
flow with arrow glyphs positioned on a regular grid. Isoclines, i.e.,
curves where the flow is either horizontal or vertical, may also be
calculated. LIC and OLIC images are determined by doing exact
(and costly) convolution operations. Particles may be introduced
into the flow as well. As particles change their location usually an
uneven particle distribution results very soon.

7 Conclusion

This paper describes various extensions to Oriented Line Inte-
gral Convolution (OLIC). As opposed to Line Integral Convolu-
tion (LIC) OLIC images depict the orientation of a flow field even
within a still image. Calculating an OLIC image involves expensive
convolution operations. FROLIC is presented in this paper which
accelerates the calculation of OLIC images by about two orders of
magnitude. This is achieved by approximating a streamlet by a set
of disks with varying intensity.

Two algorithms are discussed to efficiently animate FROLIC im-
ages. FROLIC is implemented as a Java applet to allow researchers
with different hardware resources to easily explore 2D analytical
dynamical systems through internet computing.

Future work will include variations of streamlet approximation.
For example streamlets in strongly converging or diverging areas
will be represented by disks with varying radii. Instead of approx-
imating a streamlet by a set of (usually overlapping) disks one can
also think of using predefined footprints. For each streamlet the
best suited representation in a footprint table is selected.

Visualization over the internet is a promising new area of re-
search. We plan to extend the implemented Java applet and adapt
its functionalityaccording to user reactions.

Acknowledgement

The authors would like to thank Andreas K¨onig and Werner Pur-
gathofer for fruitful discussions and Andreas K¨onig for proofread-
ing a draft version of this paper

References

[1] B. Cabral, C. Leedom,”Imaging Vector Fields Using Line
Integral Convolution”, SIGGRAPH 93 Conference Proceed-
ings, pages 263–270, ACM SIGGRAPH, 1993.

[2] R. A. Crawfis, N. Max,”Texture Splats for 3D Scalar and Vec-
tor Field Visualization”, IEEE Visualization ’93 Proceedings,
pages 261–265, 1993.

[3] C. W. deLeeuw, F. H. Post, R. W. Vaatstra,”Visualization
of Turbulent Flow by Spot Noise”, Virtual Environments and
Scientific Visualization ’96, pages 287–295, Springer, 1996.

[4] C. W. deLeeuw, J. J. van Wijk,”EnhancedSpot Noise for Vec-
tor Field Visualization”, IEEE Visualization ’95 Proceedings,
pages 233–239, 1995.

[5] D. Flanagan,”Java in a Nutshell”, O’Reilly & Associates,
Inc., 1996.

[6] L. K. Forssell,”Visualizing Flow over Curvilinear Grid Sur-
faces Using Line Integral Convolution”, IEEE Visualization
’94 Proceedings, pages 240–247, 1994.

[7] B. Jobard, W. Lefer,”Creating Evenly-Spaced Streamlines
of Arbitrary Density”, Proceedings of the Eight Eurographics
Workshop on Visualization in Scientific Computing, France,
pages 57–66, 1997.

[8] M.-H. Kiu, D. C. Banks,”Multi-Frequency Noise for LIC”,
IEEE Visualization ’96 Proceedings, pages 121–126, 1996.

[9] H. Löffelmann, A. König, E. Gröller, ”Fast Visualization of
2D Dynamical Systems by the Use of Virtual Ink Droplets”,
Proceedings of Spring Conference on Computer Graphics,
Slovakia, pages 111-118, 1997.

[10] X. Mao, M. Kikukawa, N. Fujita, A. Imamiya,”Line Integral
Convolution for Arbitrary 3D Surfaces through Solid Textur-
ing”, Proceedings of the Eight Eurographics Workshop on
Visualization in Scientific Computing, France, pages 67–76,
1997.

[11] N. Max, R. Crawfis, Ch. Grant,”Visualizing 3D Velocity
Fields Near Contour Surfaces”, IEEE Visualization ’94 Pro-
ceedings, pages 248–255, 1994.

[12] F. H. Post, T. Walsum,”Fluid Flow Visualization”, In H. Ha-
gen, et.al. (eds) Focus on Scientific Visualization, pages 1–40,
Springer, 1993.

[13] H.-W. Shen, Ch. R. Johnson, K.-L. Ma,”Visualizing Vector
Fields Using Line Integral Convolution and Dye Advection”,
1996 Symposium on Volume Visualization, pages 249–256,
ACM SIGGRAPH, 1995.

[14] D. Stalling, H.-C. Hege,”Fast and Resolution Independent
Line Integral Convolution ”, SIGGRAPH 95 Conference Pro-
ceedings, pages 249–256, ACM SIGGRAPH, 1995.

[15] G. Turk, D. Banks,”Image-Guided Streamline Placement”,
SIGGRAPH 96 Conference Proceedings, pages 453–459,
ACM SIGGRAPH, 1996.

[16] R. Wegenkittl, E. Gr¨oller, W. Purgathofer,”Animating Flow-
fields: Rendering of Oriented Line Integral Convolution”,
Computer Animation ’97 Proceedings, pages 15–21, IEEE
Computer Society, June 1997.

[17] J. J. van Wijk,”Spot Noise Texture Synthesis for Data Visu-
alization”, Computer Graphics (SIGGRAPH 91 Conference
Proceedings), volume 25(4), pages 309–318, July 1991.

[18] J. J. van Wijk,”Flow Visualization with Surface Particles”,
IEEE Computer Graphics & Applications, pages 18–24, July
1993.


