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Abstract

We present a novel method for creating automatized gameplay
dramatization of multiplayer video games. The dramatization
serves as a visual form of guidance through dynamic 3D scenes
with multiple foci, typical for such games. Our goal is to convey
interesting aspects of the gameplay by animated sequences creat-
ing a summary of events which occurred during the game. Our
technique is based on processing many cameras, which we refer
to as a flock of cameras, and events captured during the gameplay,
which we organize into a so-called event graph. Each camera has
a lifespan with a certain time interval and its parameters such as
position or look-up vector are changing over time. Additionally,
during its lifespan each camera is assigned an importance function,
which is dependent on the significance of the structures that are be-
ing captured by the camera. The images captured by the cameras
are composed into a single continuous video using a set of opera-
tors based on cinematographic effects. The sequence of operators is
selected by traversing the event graph and looking for specific pat-
terns corresponding to the respective operators. In this way, a large
number of cameras can be processed to generate an informative
visual story presenting the gameplay. Our compositing approach
supports insets of camera views to account for several important
cameras simultaneously. Additionally, we create seamless transi-
tions between individual selected camera views in order to preserve
temporal continuity, which helps the user to follow the virtual story
of the gameplay.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Viewing Algorithms; I.3.7 [Computer Graphics]:
Three-Dimensional Graphics and Realism—Animation
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Multiplayer video games often contain complex scenes with multi-
ple dynamic foci. The scenes and the game events are viewed by the
individual players from different positions. The view of each player
is relevant to their part of the gameplay. If an observer watches the
players’ views, or some additional overview provided by cameras
observing the scene, it is not trivial to see the big picture of what has
happened during the game. It is likely that some important events
will be missed, because they occurred while the observer watched
a different view at that time, since the foci are possibly overlapping
in time but not in space. However, it is possible to arrange the in-
dividual camera views into a story summarizing the gameplay and
conveying the big picture.

There are various situations where composing a summary of the
gameplay might be beneficial. State-of-the-art game consoles in-
clude functionality for the recording of the gameplay and sharing
it on social media. There are online services, such as twitch.tv
[Twitch Interactive, Inc. 2011], where users can stream gameplays
of various video games. There are also tournaments in multiplayer
video games, where the summaries of individual matches are cre-
ated to be shown to a wider audience. The summaries are also
used by the participating teams to analyze the gameplay in order to
design strategies, detect mistakes made by individual players, and
improve their overall performance. There is also a practice of us-
ing video games for creating cinematic productions by navigating
the game characters according to a pre-defined screenplay, called
Machinima [Berkeley 2006]. These developments demonstrate that
there is a demand for tools aiding in the creation of gameplay sum-
maries or visual narratives.

To create a visual story of a gameplay, various cinematographic ef-
fects can be used. However, some specifics regarding multiplayer
games have to be taken into account in order to produce a mean-
ingful story. The very fast pace of multiplayer games, as well as
many concurrent events require that hard cuts are avoided when-
ever possible. Instead, it is essential to provide linkage cues in the
portrayal of the individual events, such as continuous camera tran-
sitions when portraying a sequence of events occurring at different
locations.

The aim of this work is to design a method for creating animated
summaries of gameplays captured by many dynamic cameras, as in
multiplayer video games. The summaries have to portray many dy-
namic events, possibly occurring at the same time, to facilitate easy
understanding of the game action. During the gameplay, the cam-
eras and important game events are recorded. Afterwards, a sum-
mary is created which shows the views from the cameras in such a
way that the displayed events are meaningfully linked together and
they compose a coherent story narrating the gameplay.

By integrating events associated with individual players, and by
smoothly transitioning between them rather than splitting the game-
play into separate segments, our method provides an output suitable



for analyzing the gameplay itself. Aspects such as interaction be-
tween players or whole teams, and causal dependencies of indi-
vidual events are hard to convey by conventional methods, such as
sequentially showing the views of all players.

To efficiently portray the linkage of the events, we record their
causality, as defined by the game rules and implied by the game-
play. Using this information, we arrange the events into a structure
called event graph. Additionally, each event is assigned a camera
which captures it. This is possible since the events are linked to the
players and/or their locations, which are in turn linked to the indi-
vidual cameras. The event graph together with the linkage between
the events and the corresponding cameras contain sufficient infor-
mation to reconstruct the story which visually narrates the game-
play.

In addition to describing the gameplay by the event graph, we pro-
pose two concepts: flock of cameras and ManyCams. The flock of
cameras is a set of cameras whose parameters change dynamically
over time. Each camera has a specified lifespan. During its lifes-
pan, a continuous importance function is assigned to the camera.
It describes the importance of the corresponding captured events in
time. The flock of cameras is a structure which holds all cameras
relevant to the gameplay.

ManyCams is a method for selecting the most interesting views
captured by the flock of cameras. By merging these views, and
inserting smooth transitions between them, a story is created which
visually narrates the gameplay. The generated video is a lineariza-
tion of the gameplay, which has a parallel structure with multiple
events occurring at different spatial locations, possibly overlapping
in time. ManyCams uses the event graph and the flock of cameras,
which are constructed during the gameplay, to create a video sum-
mary for a post-mortem visual analysis of the course of the game.

2 Related Work

There are various techniques for integrating visual data into a con-
densed form which can be presented as a story. Correa and Ma
[2010] present a method for creating a compact dynamic narra-
tive from videos. These narratives remove redundancy by using the
common background for different stages of motion of various ob-
jects in the video. They allow the viewer to quickly inspect the con-
tent of the video. Barnes et al. [2010] present a method for creating
continuous images summarizing video clips. The method dynami-
cally changes the level of temporal detail by continuous zooming.
The generated image shows key features, which would otherwise
have to be inspected by watching the entire video. In contrast to
these techniques, which summarize linear videos into more con-
densed forms, our proposed technique summarizes complex paral-
lel structures of multiplayer gameplays by linearizing them into a
single summary video.

Various approaches for creating visual stories and presenting data
have been developed. Segel and Heer [2010] review different types
of narrative visualizations for presenting data based on approaches
used in news media. Gershon and Page [2001] describe how sto-
rytelling helps to convey information so that it is more easily un-
derstood and remembered by the target audience, while Ma et al.
[2012] provide an overview of how storytelling can be incorporated
into scientific visualization techniques. Wohlfart and Hauser [2007]
propose a method for storytelling in volume visualization. In their
method, storytelling and story authoring are two distinct steps. In
the story authoring step, the dataset is explored by an expert user.
While the data are being explored, the expert user iteratively cre-
ates the virtual story. In the storytelling step, the findings from the

previous step are presented. The user watching the story also has
the possibility to interrupt it and perform data exploration on his
own. Yu et al. [2010] propose a system which extracts events from
time-varying datasets and organizes them into an event graph. By
traversing the event graph, an animation with a narrative structure
is created which shows the events in a meaningful order. We also
employ the concept of event graphs to organize the events extracted
from the video game. However, we use it to merge views captured
by the flock of cameras into a continuous animated sequence. This
allows us to illustrate dynamic scenes of the video games with mul-
tiple temporally-overlapping foci. Viola et al. [2006] propose a
technique for focusing on selected features of a volume dataset. A
viewpoint showing the selected feature in the most informative way
is determined. An animation switches between viewpoints for dif-
ferent features. This technique is complementary to our method,
since we only focus on compiling the views into a coherent sum-
mary, not on selecting adequate viewpoints for individual cameras
to capture the scene or the dataset in a certain way.

Creating summaries of computer games has been examined as well.
Halper and Masuch [2003] propose a method for extracting game
events by analyzing computer game variables to evaluate how in-
teresting individual time-steps of the gameplay are. The authors
present several methods for merging these events into scenes, which
then compose the story of the gameplay. Cheong at al. [2008]
present ViGLS - a system for visualizing gameplay summaries from
game logs. The game logs are analyzed and sequences of sum-
mary actions are extracted from them. These are then sent to a
game engine, which replays the actions to generate a visual sum-
mary. The goal of our work is to extend these approaches by pro-
viding visual links between individual events so that multiple con-
current foci occurring in the dynamic game scene can be captured
by the composed summary. Our method linearizes the gameplay,
so that continuous dramatizations with a parallel structure can be
created. Therefore, our method is able to create summaries of com-
plex gameplays, such as those of multiplayer games, where events
are observed by multiple cameras, and where it is important to il-
lustrate causality between the events.

An important aspect of creating visual narratives and informative
overviews of 3D scenes is the virtual camera setup. An exten-
sive overview of camera control in computer graphics is given by
Christie et al. [2008]. Löffelmann and Gröller [1996] propose ex-
tended cameras. By using extended cameras, it is possible to ren-
der images with non-realistic perspectives. This enables various
effects, such as the seamless combination of several different views
of a virtual object in the same image. Agrawala et al. [2000] use
multiple projections for different objects in the scene to create vari-
ous artistic effects. Hsu et al. [2011] present a framework for using
several arbitrary cameras to render a single scene at different levels
of detail. The cameras are combined to create a single multiscale
rendering of the dataset. For this purpose, a mask is specified to de-
fine which part of the image should be generated by which camera.
Seamless transitions between these image parts are then created.

He et al. [1996] present Virtual Cinematographer, a system for
the automatic setup of cameras to capture events in dynamic 3D
environments according to cinematographic principles. A similar
system, utilizing an agent-based camera, is proposed by Hornung
et al. [2003]. Oskam et al. [2010] propose a method for plan-
ning collision-free camera-paths between two points in a 3D scene,
so that a selected focus point is visible during the camera transi-
tion. Such camera-shot planning-systems can be also used with our
method, since we do not assume any particular camera-placement
method for capturing events of the game.

Virtual cameras have been employed for different types of tasks
as well. For instance, Qureshi and Terzopoulos [2006] propose
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Figure 1: Overview of the ManyCams, the flock of cameras, and
the data on which they operate. Camera paths, camera importance,
and the events of the gameplay are extracted from the game and
stored in the flock of cameras and the event graph. These structures
are then processed by our ManyCams method to produce the video
summarizing the gameplay.

multiple virtual cameras to simulate real-world problems, such as
person-tracking in video-surveillance feeds.

In this work, our goal is to display 3D scenes in such a way that mul-
tiple dynamic foci are captured in a clear and semantically mean-
ingful way. For this purpose, we utilize a flock of cameras, which is
composed of multiple camera paths. The paths of the cameras can
be either directly extracted from the video game, such as view paths
of individual players, or created by game-level designers. Each
camera path has a specific lifespan and it is assigned a continu-
ous importance function over the period of its existence. The focus
of this paper is not on creating these camera paths, but instead lies
in visualizing image outputs of the cameras according to their im-
portance. The intent is that the captured events are meaningfully
linked together and the gameplay can be easily analyzed. The goals
are: to display outputs of the cameras with high importance, to
make the changes between individual cameras smooth and contin-
uous so that users can easily maintain an overview, and to simplify
the flock of cameras in a smart way so that the method can be ef-
fectively used for summarizing and analyzing gameplays. Our pro-
posed method extends existing storytelling approaches by creating
animations where multiple foci, or game events, possibly overlap-
ping in time or space, are conveyed by the generated visual story.

3 Overview

We solve the problem of composing gameplay summary-videos
from available gaming data. Figure 1 shows an overview of our
method. The black arrows illustrate the data flow. First, camera
paths are extracted from the game, e.g., views of individual players
as they move through the game world. Additionally, the importance
of the individual views in time as well as interesting game events
are extracted during the gameplay. Our method does not assume
particular event types or functions which evaluate the importance
of each view. This information has to be provided by the game,
since it depends on the game logic. Our method is only concerned
with building the video summary of the gameplay described by the
extracted data. If the game logic does not inherently contain any
metric which could be used to evaluate the importance of the indi-
vidual cameras, an importance of individual event types could be
specified manually instead.

As a tangible example, let us consider a deathmatch game (where
the goal is to kill all opponents) between four players A, B, C, and
D. During the game, all but one players are sequentially killed. The
game ends as soon as there is just one last player alive. Suppose
the gameplay progresses as follows: Players A and B join the game
and meet at a certain place. Soon after A spots C and kills him.
Player C has joined the game shortly before that. After C is killed,
he drops his weapon. Meanwhile, D also joined the game. He finds
the weapon of player C. He picks it up and uses it to kill A. Shortly
after that he also kills player B. At this point the game ends, because
D is the last player alive.

The goal of our method is to generate a video, which visually tells
this story by showing sequences of what individual players saw dur-
ing the gameplay. We achieve this by extracting the data about
the players and the game events (e.g., a player kills another one)
from the gameplay. The extracted data are organized in data struc-
tures which are further described in Sections 3.1 and 3.2. These
structures, i.e., flock of cameras and event graph, are processed by
ManyCams after the gameplay finishes. The ManyCams method in-
tegrates the cameras into several continuous views which visually
express important events as well as their causal contiguity, form-
ing a visual story. Afterwards, the layouting algorithm juxtaposes
the generated views in space or time in the screen space, so that
the game summary can be generated. This information is sent back
to the game engine, which then renders the game world from the
perspective of the views generated by the ManyCams method to
produce the final gameplay summary-video.

3.1 Flock of Cameras

We assume that the events which occur during the gameplay are
captured by the cameras present in the 3D scene, such as views of
individual players, or cameras surveying certain locations. While
the players control the cameras capturing their views by navigat-
ing their avatars, the surveying cameras can be either positioned
manually by the level designers or their parameters can be deter-
mined dynamically by one of many camera-path planning-methods
[Halper et al. 2001; Oskam et al. 2010; Yeh et al. 2011].

A flock of cameras is a structure which maintains all the necessary
information about the cameras in the 3D scene. A flock of cameras
F = {c0(t), ...,cn(t)} is a finite set of camera functions ci(t). For
every time step t, ci(t) specifies the camera parameters pi(t) as a
transformation matrix, an image of a camera view vi(t) rendered
using pi(t), and a camera importance ii(t) as a real number in the
interval [0,1], where 0 signifies the lowest importance.
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Figure 2: An example of an event graph. The circles indicate indi-
vidual events, the solid arrows are causal links extracted from the
game, and the dashed arrows are player-links derived from the flock
of cameras.

3.2 Event Graph

The events occuring in the game are not separate entities, but rather
interconnected elements of a narrative portraying the action of the
gameplay. In our approach, an effective visual summary of the
gameplay should convey the causality of the individual events. This
way, the summary tells a coherent story, which can be followed in
order to understand what happened during the gameplay. Under-
standing the story of the gameplay allows us not only to analyze
the behaviour of the individual players, but also enables us to see
the consequences of their actions.

To compose a meaningful narrative of the gameplay, we extract
events and their causality from the game while it is played and store
this information in an event graph. The types of events and their
connections depend on the actual game. For instance, in a first per-
son shooter, there are events such as player A shoots or player B
dies. If player A killed player B, the event player A shoots caused
the event player B dies. Another example is that player A throws
a grenade and kills several other players. An event can cause zero,
one, or several other events, and it can be caused by zero, one, or
more events. We connect causally dependent events in the event
graph by causal links.

Another aspect of gameplay dramatization in multiplayer games
is that there are possibly multiple players participating in individ-
ual events. As they move through the game, individual players or
groups of players participate in different events. Events with the
same participants are semantically related within the story. To cap-
ture this concept in the event graph, we connect such events by
player-links.

To build the player-links, we use the information stored in the flock
of cameras. We treat each camera in the flock as a player. There-
fore, all entities which are able to observe the action of the game,
such as spectators or surveillance cameras, are treated as players.
Instead of participating players, each event is associated with a set
of cameras which observe the event. The player-links are then con-
structed based on the events’ associations with the cameras from the
flock. Details are provided in Section 4.1. Besides actual players,
this abstraction also accounts for non-playing participants, such as
spectators in first person shooters.

The causal links and the player-links connect the events according
to the interactions of the players during the gameplay. Therefore,
the event graph abstracts the story of the gameplay. Figure 2 shows
the event graph of the previously described example gameplay. The
circles represent the events of the game, while the letters indicate
which players participated in individual events. The causal links

(solid arrows) indicate how individual events are related according
to the game logic. The player-links (dashed arrows) indicate how
players moved between events. Both types of links encode the pro-
gression of the story which we want to tell.

The event graph is a directed graph G:

G = (E,K) (1)
E = {e0, ...,en|ei = {ai, ti,di,Pi}} (2)

K = {k0, ...,kl ,r0, ...,rm|ki = (ex,ey) ∈ E2,r j = (ez,ew) ∈ E2}
(3)

E is the set of all events ei which occurred during a gameplay. Each
event consists of the event type ai, the time of occurrence ti, the
duration of the event di, and a set of cameras Pi which are associated
with the event.

K is the set of the edges representing links between the events.
It consists of causal links k0, ...,kl extracted from the game, and
player-links r0, ...,rm derived from the flock of cameras. Each link
is an oriented edge between two events in the event graph.

3.3 Camera Operators

In order to produce a summary of the gameplay telling a story of
what happened in the game, the events from the event graph need to
be displayed using the available cameras. A naı̈ve approach would
be to sequentially show views from all the cameras stored in the
flock. In this way, every event is included in the story, since every-
thing that the game participants saw during the gameplay is shown.
However, such a summary does not communicate any causality be-
tween the events, other than what each of the players did separately.
In this case, the story of the gameplay is not effectively conveyed.
An additional drawback is that possibly redundant and unimportant
information is present.

Another approach, often employed in video surveillance, is to show
all the views simultaneously. Although all the events captured by
the cameras would be shown on screen, the viewer would poten-
tially have to focus on multiple events at the same time. This com-
promises the utility of the approach for scenarios such as multi-
player video games, where multiple dynamic foci possibly occur
simultaneously.

In our work we aim to overcome the drawbacks of the mentioned
methods. We compose the visual story by following the links be-
tween events in the event graph, so that the coherence of the action’s
portrayal is maintained. Additionally, the redundancy in the views
of the available cameras is reduced before the views are employed
to display individual events. This way, the generated video sum-
mary tells a story which helps to make sense of the events in the
game.

The method presented in this work operates on virtual cameras dis-
playing 3D scenes. In contrast to real-world scenarios where mul-
tiple video cameras are employed, such as sports events or video
surveillance, processing virtual cameras enables the modification of
the camera parameters and rendering of the scene from new view-
points. We utilize this possibility by applying various operators on
the flock of cameras. They reduce redundant information and pro-
vide visual links between related events.

The Overview is an operator which shows the generated visual nar-
rative from a bird’s-eye view provided by a dedicated overview
camera placed above the scene. The players, their movements, and



Figure 3: Some of the pictograms used by the overview operator
for a schematic display of the gameplay.

actions are depicted with animated pictograms (some of them are
shown in Figure 3). This operator is inspired by schematic depic-
tions used in sports to analyze the strategies of a team.

The Time-lapse operator smoothly changes the speed of the gener-
ated visual narrative. It is used to seamlessly pass through uninter-
esting parts of the story. It avoids creating a hard cut, which might
be confusing in a summary of a fast-paced video game.

The Mark-player operator is used to point out individual events
shown by the generated visual narrative. It stops the playback when
an important event occurred, and highlights the entity which caused
the event. In our use case, we apply this operator to mark players
important for the story. The operator is based on the practice often
employed in live-tv broadcasting of sports events, when the broad-
cast video is briefly stopped so that an important object or person
can be marked to guide the viewers’ attention.

The Camera-merge/split operators are applied to multiple cameras
showing the same event from similar viewpoints. If several play-
ers move together as a group in the same direction, the camera-
merge operator is applied. When they no longer move together,
the camera-split operator is used. When the cameras are merged,
their views can be used in the summary video interchangably. The
merged cameras are seen as a single entity within the story.

The View-switch operator is applied if events occurring at differ-
ent times or places need to be shown in a sequence. Instead of
jumping from one event to the other one, the operator interpolates
between the camera parameters of the views capturing both events.
Simultaneously, time is interpolated from the end time of the first
event to the beginning time of the second event. If the second event
occurred before the first one, the time flows backwards during the
interpolation, giving the view-switch a dramatic effect. The view-
switch communicates spatial (by interpolating camera parameters)
and temporal (by interpolating time) relationships between the two
events shown in a sequence. Similar techniques are often used in
cinematography, where multiple scenes are displayed in one con-
tinuous shot to communicate the continuity of the portrayed events.

2D inset-show/hide operators show and hide 2D insets of a cam-
era view which is currently not the main focus, but is relevant to
the current situation. An example scenario is when several players
observe the same situation from substantially different viewpoints
which cannot be merged. Since these players observe the same fo-
cus, it is possible to display their views in parallel without confusing
the viewer of the summary.

4 ManyCams: Summarizing the Gameplay

ManyCams is a method for traversing the event graph and matching
patterns with operators appropriate for the given situation, which
are then applied to the flock of cameras to produce a summarizing
visual narrative of the gameplay. To achieve this goal, it is neces-
sary to create a virtual representation of the story, and to provide an
algorithm for creating a visual narrative from this representation.

4.1 Story Representation

The story is represented by the event graph. The data extracted
from the game contain the nodes of the graph (events), and causal
links between them. In order to represent the story of the gameplay
by the event graph, it has to be further pre-processed.

First, the events are associated with the cameras from the flock. De-
pending on the game, this information might be available from the
extracted gaming data. Alternatively, we provide an implementa-
tion of a density-based clustering algorithm DBSCAN [Ester et al.
1996], which can be used to associate multiple cameras with sim-
ilar views with a single event. However, a heuristic for estimating
the similarity between camera views has to be provided as well. For
first-person shooter games, we use the sum of spatial-position dif-
ferences and viewing-angle differences as the heuristic. This can
be evaluated quickly, while it is robust enough to efficiently cluster
views of players in first-person shooter games.

The duration of the summary video can be specified. Only the n
most important events, which would fit into the specified duration,
are included in the summary video. Since the events are associated
with the cameras from the flock, the time-varying importance of the
cameras can be used to automatically estimate the importance of the
events. If there is no camera importance information available in
the extracted gaming data, the importance of individual event types
can be specified manually.

Finally, player-links are added to the event graph. A player link
is created between each pair of chronologically successive events
(ei,e j) with sets of associated cameras Pi,Pj, such that Pi∩Pj 6= /0.
If there are multiple events fulfilling this condition for the event
ei, only the one with the closest timestamp is chosen to create the
player link.

4.2 Building the Visual Narrative of the Gameplay

The summary video is constructed by appliyng operators on the
flock of cameras. In the story of the gameplay scenario described at
the beginning of Section 3, players A and B meet and for a period
of time, they observe similar parts of the scene. Here, the camera
merge operator can be applied. At times, the described narrative
is non-linear in the sense that the events are not described in their
chronological order. In the visual summary, this could be achieved
by applying the view-switch operator. The story itself follows the
links in the event graph. By traversing the event graph and applying
the camera operators, it is possible to generate a visual summary
narrating the story as described in the beginning of Section 3.

To create the summary video of the gameplay, the layouting algo-
rithm arranges the camera views of the events, while it applies the
described camera operators. It begins by showing the view of the
chronologically first event. The algorithm continues by traversing
the event graph in a depth-first order, following the causal links
and player-links. In this way, the story progresses by placing se-
mantically relevant events, as determined by the links successively
connecting them. The links to the events with higher importance
are followed first. When the next event is shown, the camera merge
operator is applied to all cameras associated with it, and the cam-
era split operator is applied when the event finishes. This ensures
that the events with multiple participating players are not shown
multiple times. The depth-first search of the event graph ensures
that showing related events in sequence is preferred to applying the
view-switch operator between unrelated events. This keeps the co-
herency of the parallel narrative of the visual story.
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Figure 4: (a) Five cameras in a scene. The gray one is an overview camera. (b) A visibility graph. (c) Switching view from the green camera
to the red one would cause a collision with a wall. (d) The view from the green camera can be switched to the view from the red camera
through the blue camera, because such a path exists in the visibility graph. (e) The views from any pair of cameras can be switched through
the overview camera (as indicated by the gray arrows in (b)).

4.2.1 View-Switch Operator

In our storytelling approach employing multiple cameras capturing
the events of the gameplay, it is often necessary to switch between
views. Our method tries to sequence the events so that the ones
which are temporally adjacent in the summary video are related, as
indicated by the edges in the event graph. Since the event graph is
not necessarily traceable (i.e., containing a Hamiltonian path), this
might not be possible for the whole story. Therefore, we provide the
view-switch operator which allows us to seamlessly switch between
views of potentially unrelated events.

During the rendering of each frame, we build a visibility graph. It
is a directed graph, where the nodes represent individual cameras
from the flock, and the directed edges from a node indicate which
cameras are seen by the camera represented by this node. Figure 4a
illustrates a set of cameras and Figure 4b shows their corresponding
visibility graph. The overview camera, which sees all the players, is
included in the calculation of the visibility graph. It ensures that a
path exists between any two cameras in the flock. For the overview
camera, the rendering has to be adjusted, e.g., by making ceilings
transparent, so that all the players are visible.

We use the visibility graph for seamless view switching. If the view
from a camera should be switched to the view of another camera,
we first find the shortest path between nodes in the visibility graph
the Dijkstra algorithm [Dijkstra 1959]. Subsequently, we create a
curve spatially connecting cameras of all the views on the path.
This curve can be used to smoothly interpolate between the desired
views. This approach ensures that the generated curve does not in-
tersect any obstacles in the 3D scene, since the cameras on the path
are sequentially visible from each other. Figure 4c illustrates an un-
desired situation if two cameras would be interpolated directly. This
would result in collisions with the scene geometry. Our approach
employing the visibility graph is illustrated in Figure 4d.

The view-switch operator seamlessly interpolates between views
of two events. Since the time of the occurrence of these events
might not correspond with the length of the view-switch, the current
timestep of the gameplay is interpolated together with the camera
parameters. This means the time might be dilated during the view-
switch. It might even flow backwards, in case the events occurred
in reversed order compared to how they are shown in the summary
video. The effect of reversing the time while moving the camera
to a new location is used in cinematography if it is important to
correctly portray the order of the events.

4.2.2 Overview Operator

The player-links in the event graph join events where the same play-
ers are participating. Since the story is constructed by following
these links, it can be split into continuous blocks of events involv-
ing individual players. Before each block, we apply the overview
operator, which shows a schematic depiction of movements and ac-
tions of the involved players from the perspective of the overview
camera. Each event is illustrated by a simple animation, while
the movement of the players between temporally adjacent events is
shown by low-pass filtered paths of their positions recorded during
the game.

After the whole event sequence is shown in the overview, we apply
the view-switch operator to rewind the time and show the same se-
quence of events from the viewpoint of the player associated with
the events in this story block. If there are several players associated
with all the events in the block, any one of them is chosen, since
their views are sufficiently similar.

This combination of operators gives the audience an initial
overview, followed by a detailed depiction of the events, as seen
by the players. The view-switch operator provides a spatial and
temporal reference to the other parts of the story, since the camera
always moves continuously in space and time.

4.2.3 2D Inset-Show/Hide Operator

2D inset operators are used in situations where it is beneficial to
show multiple camera views juxtaposed in image space. If a cur-
rently shown event caused an event associated with another player,
the view of the other player is shown in the 2D inset. For instance,
when player A kills player B, we show the view of the player A
on the entire screen, while the view of player B is shown in the 2D
inset. The same situation is shown from two different perspectives.

4.2.4 Camera Operators for Enhancing First-Person Views

If the view of a player moving between related events is shown, the
time-lapse operator continuously increases the playback speed, as
long as no important events are in the depicted field of view. As the
player is getting closer to a certain event, the playback is continu-
ously slowed down. This form of temporal fish-eye lens allows us
to connect related, but rather distant events, by a continuous view



(a) (b) (c)

Figure 5: A summary video of a gameplay of Jake 2 generated by ManyCams. (a) Overview operator showing the movements of two groups
of players from the green team, trying to surround players of the red team. (b) View-switch operator continuously changing view towards an
event which has already occured. To achieve this, time is reversed, which is communicated through a distinct visual style applied to the entire
screen. (c) The mark-player operator (red circle in the middle) indicating a player of the opposing team being shot. Description of the event
is shown at the top. 2D inset in the left bottom corner shows the view of the dead player. The surrounding is darkened to guide the viewer’s
attention towards the event.

of the player. In case either the view-switch or time-lapse opera-
tor changes the playback speed, a distinct visual style is applied to
illustrate the modified time flow (Figure 5b).

It is important that the changes in the playback speed are smooth
so that they are not distracting the viewers. For this reason, we re-
sample the individual frames in the time domain. Slowing the play-
back down is achieved by interpolating between successive frames.
Making the playback faster is done by averaging several frames. A
drawback of both approaches is the introduction of a certain blur.

If another player interacts with the player whose view is currently
shown, causing an event (such as shooting), the mark-player oper-
ator is applied. The time stops for a brief moment, and the position
of the interacting player is highlighted with a growing circle. The
circle is color-coded according to the type of caused event (e.g.,
shooting or spotting). At the same time, the surroundings of the
marked player are darkened, to further guide the attention of the
viewers, as depicted in Figure 5c.

5 Results

In order to evaluate our method, we apply it to a real computer
game. We use the multiplayer, first-person shooter game Jake2
[Bytonic Software 2006], a Java port of Quake II by id Software,
to acquire the gaming data consisting of movements and actions of
the players, their views, and game events. These data are processed
by our method, which calculates additional views used for smooth
transitions between the shown events, and composes the summary
video. It also inserts a stopwatch into the generated video which
helps to indicate the flow of time. Text captions describing the cur-
rently shown events from the event graph are automatically inserted
as well. Still images from a generated summary video are depicted
in Figure 5. The full video is included as supplementary material.

Our method is mainly targeted for games played in teams, which
often utilize various strategies. Our method is particularly useful
for reviewing the execution of such strategies, either for training
or entertainment purposes. We recorded several team deathmatch
games, where the goal is to eliminate all players of the opposing
team. There were two teams, each of four players. The play-
ers were given strategies, which they followed during the game.

The summary video of the game generated by our method clearly
shows these strategies and tasks carried out by individual players.
We showed the summary video to experienced video-game players.
They confirmed that the video sufficiently illustrates the performed
strategies and tasks of individual players, even though at some in-
stances it was not immediately clear to them why the events were
shown in a particular order.

6 Discussion

Our gameplay-summarizing method captures multiple temporarily
and spatially overlapping events in a visual story with a parallel
structure, which narrates the course of the gameplay. We organize
multiple cameras capturing the gameplay into a flock of cameras,
and store game events in an event graph. The redundancy in the
views shown by the cameras of the flock is reduced by applying
several operators. The story is constructed by displaying the cam-
era views capturing the most important events. Since the action in
multiplayer games is often complex, smooth transitions are placed
between the displayed events so that their spatial relations and tem-
poral succession is communicated. Our method allows users to an-
alyze the behaviour and interactions of participating teams or indi-
vidual players during the gameplay.

7 Conclusions

In this paper, we described a system for generating summary videos
of multiplayer gameplays. These summaries are suited for enter-
tainment, or for analyzing and exercising team strategies. The chal-
lenge of this approach is to deal with multiple players, who interact
with the system and create multiple, possibly concurrent events at
different places. Our method smoothly integrates the recorded gam-
ing data of all players, utilizing overviews and time dilation effects,
so that the gameplay is illustrated as a continuous and expressive
visual story.
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