
EUROGRAPHICS 2015 / O. Sorkine-Hornung and M. Wimmer
(Guest Editors)

Volume 34 (2015), Number 2

Layer-Based Procedural Design of Façades

Martin Ilčík Przemyslaw Musialski Thomas Auzinger Michael Wimmer

Vienna University of Technology, Austria

Figure 1: Complex façade layouts (right), which are hard to model in conventional shape grammars, can be intuitively designed
with the help of our framework by decomposing the layout into multiple layers (center). We ensure sensible combinations of
the various layers via an automatic process. This allows the user to model simple patterns on each layer (left) instead of one
complex arrangement.

Abstract
We present a novel procedural framework for interactively modeling building façades. Common procedural ap-
proaches, such as shape grammars, assume that building façades are organized in a tree structure, while in prac-
tice this is often not the case. Consequently, the complexity of their layout description becomes unmanageable
for interactive editing. In contrast, we obtain a façade by composing multiple overlapping layers, where each
layer contains a single rectilinear grid of façade elements described by two simple generator patterns. This way,
the design process becomes more intuitive and the editing effort for complex layouts is significantly reduced. To
achieve this, we present a method for the automated merging of different layers in the form of a mixed discrete
and continuous optimization problem. Finally, we provide several modeling examples and a comparison to shape
grammars in order to highlight the advantages of our method when designing realistic building façades.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geome-
try and Object Modeling—Modeling packages I.3.5 [Computer Graphics]: Computational Geometry and Object
Modeling—Object hierarchies;

1 Introduction

Procedural modeling is a successful technique for quickly
modeling architectural content. It is highly versatile and al-
lows specifying a large variety of arrangements of architec-
tural elementa, including stochastic variations. Models crea-
ted by such methods can exhibit a high degree of detail and
realism. However, the main disadvantage of procedural tech-
niques is that the design space can be very large and thus dif-
ficult to explore. In particular, organizing, editing and com-

bining a large quantity of procedural rules is still a complex
and daunting task. It can also be hard to exert fine-grained
control over the appearance of the generated models. Fur-
thermore, in the context of building façades, there are struc-
tures that cannot be easily expressed in a hierarchical rule
set as employed by existing solutions. This may be seen in
Figure 1, left, which is not a trivial grid-like arrangement of
elements, but exhibits a more complex appearance.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

M. Ilčík, P. Musialski, T. Auzinger, M. Wimmer / Layer-Based Procedural Design of Façades

Contribution. In order to be able to model such arrange-
ments, we introduce a novel layer-based editing approach,
where the user specifies the structure independently for in-
dividual layers. Each layer consists of two simple generator
patterns that span a rectilinear grid (cf. Figure 1, middle and
right). However, naively merging the layers leads to corrupt
results (Figure 4). To solve this problem, our main techni-
cal contribution is an automated alignment method to satisfy
inter-layer and intra-layer relations and constraints.

The use of layers is an essential technique in graphical
design and can be found in many major 2D and 3D content-
creation tools. Apart from an intuitive way to organize sce-
ne elements, they often provide means for interactions bet-
ween them. The application of the layer paradigm to façades
brings about a number of interesting modeling abstractions
that were not possible with traditional tools that organize the
data in tree structures.

Inspired by these observations, our framework enables
convenient modeling of variable façade designs. Our ap-
proach is not inverse, i.e., the façades are designed from
scratch. The user can interact with the model (i) by adding or
removing layers, (ii) by changing the patterns of a layer, (iii)
by specifying the size and appearance of façade elements.
The layer-based approach reduces the complexity of ma-
naging procedural rulebases, and also allows direct control
of individual façade elements. The automation of the actual
merging process of procedural layers is the main computa-
tional challenge. We present a solution that is accomplished
by a mixed discrete and continuous optimization. In particu-
lar, the contributions of this paper are:

• A novel approach for modeling of façades by providing
multiple layers instead of a single top-down tree struc-
ture. This allows the user to introduce changes on diffe-
rent layers without the necessity to alter the whole tree.
Moreover, allowing layers to overlap gives the ability to
model features that do not fit into a hierarchy, like pat-
terns that intersect other structures (see Figure 1).

• We provide a novel technical solution based on combined
discrete and continuous optimization in order to combine
all layers into a single consistent layout. It identifies valid
alignments of interacting elements across layers to deliver
plausible façade models.

In Section 6, we compare our approach to classical shape-
grammar modeling and show that it is easy to control and
allows modeling a large variety of façades.

2 Related Work

Procedural generation of architectural models is an approach
to model urban environments by means of rules defined by
production systems like shape grammars [Sti75] or set gram-
mars [WWSR03]. We refer to the report by Vanegas et al.
[VAW∗10] for a comprehensive review.

Several works tried to make shape grammars better sui-
table for modeling: Mueller et al. [PM01, MWH∗06] in-

troduced a procedural generation framework called CGA-
shape; Finkenzeller [Fin08] introduced a method for proce-
dural modeling of and modifying detailed building façades
that adapt to geometry automatically; and Hohmann et al.
[HHKF10] provided a procedural shape grammar to describe
façades within a GML-framework. These systems are quite
complex, difficult to control, and it is laborious to design the
grammar rules. Lipp et al. [LWW08] introduced an interacti-
ve editing system allowing the creation of rulebases without
text-file editing and proposed first concepts of local control.
G2 by Krecklau et al. [KPK10] improved the local control
and generalized geometry of non-terminals. Later, they focu-
sed on high-quality rendering of façades for large city scenes
using GPU evluation of split grammars [KBK13].

Procedural methods are used in the field of reconstru-
cion as well. Aliaga et al. [ARB07] automatically extract
simple patterns from façade models and enable easy ex-
ploration of novel variations. Further solutions for façade
reconstruction from images utilize either interactive mode-
ling [XFT∗08, MWW12] or inverse procedural modeling
[WFP10, SHFH11]. Musialski et al. [MWA∗13] provide a
comprehensive survey of the topic.

Different concepts of layering have been recently utili-
zed, but only within the reconstruction domain. Zhang et
al. [ZXJ∗13] proposed a framework that maximizes the sym-
metry of pre-segmented façades by dividing the façade in-
to different layers of symmetric substructures. Fan et al.
[FMLW14] partition façade elements into interleaving grids.
Driven by supervised learning, their method automatically
completes a partially occluded façade. Variations and re-
targeting of façades from pre-segmented images is mostly
based on hierarchical decompositions [LCOZ∗11, BSW13].
The most recent method by Dang et al. [DCNP14] introdu-
ces topological jumps in the hierarchy.

The remainder of the paper describes our framework in
Section 3 and an example modeling process in Section 4.
After the technical description of our alignment solver in
Section 5, we present results in Section 6.

3 Layer-Based Modeling
First, we give an overview of the basic concepts that are em-
ployed in our modeling framework. Please refer to Figure 1
for an accompanying illustration and Figure 2 for a summary
and the interrelations of the introduced concepts.

3.1 Concepts
Canvas: Similar to general image editing, the modeling

process starts with an empty canvas. By setting the size
of this rectangular region, the user determines the extent
of the façade.

Layer: A stack of layers fills the canvas. Each layer is a
rectilinear 2D grid of shapes (cf. Figure 1, center) that
covers the canvas entirely.

Symbol: Each layer is generated by an outer product of ab-
stract 1D elements (in horizontal and vertical direction),

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

M. Ilčík, P. Musialski, T. Auzinger, M. Wimmer / Layer-Based Procedural Design of Façades

 STACK

LayerDepth

LayerDepth

Pattern

 LAYER

PATTERNS:
X

Y

AlignGroup

PatternAlignGroup

SHAPES MATRIX:
X PATTERN SYMBOLS

Y PATTERN
 SYM

BO
LS

Shapes
all possible

Numeric String
Reference Other
Boolean

 LEGEND

Mask

Mask

Unique key

 SUBSTITUTED PATTERN

Substituted Symbol

PATTERNS:
Control Content

 SYMBOL

Label Size
ALIGNMENT:

Opaque
Attached

Unoccludable

 COUNTER

Label Min MaxRe�ection

 CANVAS
Width Height

 SHAPE

Material
Depth o�set

Geometry

SYMBOLS: X Y

Figure 2: A simplified overview with the most important properties of components introduced in Section 3. The user interface
provides access to all fields listed in this diagram.

called symbols, each identified by a label string. The user
sets the preferred size of the symbol, providing the geo-
metric width or height of the associated shapes. Symbols
can be marked as transparent and used as placeholders.

Shape: A cell in the layer, uniquely determined by a pair
of symbols, is called shape. These are the geometric buil-
ding blocks of the façade and are equipped with 3D mes-
hes and mapped with materials (i.e., shading, textures).
Furthermore, a depth offset allows specifying their posi-
tion along the normal of the canvas. Transparent symbols
generate void gaps instead of shapes.

As shown by the example in Figure 1, the abstract layout
description of the background layer is given by the outer
product of the symbols {A,B} (in the horizontal direction)
and the symbols {Y,X ,T} (in the vertical direction), genera-
ting the shapes AY , AX , AT , BY , BX , and BT . In general, a
layer with m unique horizontal and n unique vertical symbols
exhibits mn shapes). The associated preferred width (resp.
height) of shape BY is given by the preferred size of sym-
bol B (resp. Y).

3.2 Procedural Layers

Words. The façade elements (i.e., shapes) of each layer
are given by the outer product of a horizontal and a vertical
sequence of symbols, denoted as words. In order to provide
the user with an easy and efficient way to specify suitable
words, we use formal languages [HMU07].

Patterns. In most cases, façade layouts exhibit a high de-
gree of repetitions and reflective symmetries. These can be
efficiently encoded with patterns. Each pattern generates a
set of words that the user identified as suitable candidates
for the façade layout. We specify patterns by regular expres-
sions, using the common operations:

| alternation A|B → {A, B}
· concatenation A|B · C → {AC, BC}
() grouping A|(B ·C) → {A,BC}

Regular languages are too simple to encode complex sym-
metries on façades, while fully context-sensitive languages
are needlessly complex for this task. Therefore, we start with
a regular language and extend it with the required functiona-
lity by adding a parametric counting operation

Ak = AA . . .A︸ ︷︷ ︸
k times

,

where k ∈ Z is a globally defined parameter. A negative k
yields a reflection of the base using one of the reflection mo-
des (see supplementary material). We denote a reflected in-
stance of a symbol B as B. For k = 0, the empty word ε

is obtained. Nesting several operations of the same type is
not supported. Note that by generating akbkck, the concept
of patterns is neither regular nor context-free [Jaf78]. Se-
veral works already studied pattern languages [Ang80] and
regular expressions with exponentiation [MS72] and coun-
ting [Gel10].

Factorization of Dimensions. As a fundamental aspect of
our modeling framework, we restrict the content of each
layer to be defined separately and independently for the hori-
zontal and vertical direction. Thus, the content of each layer
is given by the outer product of the words that are specified
in horizontal and vertical directions, which essentially de-
fines a grid of design elements (cf. Figure 1, left). Such a
composition has several advantages, both from a computa-
tional perspective, as the combination of different layers can
be computed for each direction separately, as well as from a
user perspective, as the complexity of the layout description
is significantly reduced and unintended results can be edited
for each direction independently.

Stack of Layers. Similar to the well-established paradigm
in general image editing, layers can be stacked using a user-
specified depth value. The resulting ordered set is denoted
as the stack of layers. The depth ordering of the layers plays
an essential role in the design process, since layers ‘closer to
the user’ occlude layers below. We infer valid combinations
of layers from their relative ordering (e.g., a column should

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

M. Ilčík, P. Musialski, T. Auzinger, M. Wimmer / Layer-Based Procedural Design of Façades

not cover a window, unless explicitly allowed), as well as vi-
sibility information for the final model (e.g., a window fully
covered by a wall can be omitted).

3.3 Substituted Patterns
The structure of a façade often needs to be refined during
the design process. Instead of editing existing patterns, we
provide a mechanism to substitute parts of them with new
content. A substituted pattern is given as a pair of two pat-
terns, e.g.,

xm (1)

m :=A(BA)k (2)

where we differentiate between control pattern (1) and con-
tent pattern (2). All instances of the substituted symbol in (1)
are replaced by a single word produced by (2), i.e.,

xA, xABA, xABABA, . . . (3)

Unsized Symbol. A symbol that is exclusively used in
control patterns (x in previous examples) does not requi-
re a user-specified preferred size. It is referred to as unsi-
zed. During the layer-combination phase, our proposed ali-
gnment process automatically determines suitable sizes for
such symbols. Unsized symbols that remain unsubstituted
are typically used as wildcards to match arbitrarily large por-
tions of the canvas without changing the patterns themselves.
In Eq. (3), x aligns content to the right. In Eq. (6), two instan-
ces of y are used to center the content.

3.4 Transparency and Masking
Unsized symbols are meant to be used as invisible place-
holders to improve the alignment of the substituted content.
Therefore, we implicitly set all unsubstituted letters in a con-
trol pattern to be transparent. As an example, in words ge-
nerated by

yBmAm−1By (4)

m :=(AB)k, (5)

A B C

F

E

D
|CD||AB|

Figure 3: Flattening the stack of layers without alignment
constraints may produce various types of errors. We demon-
strate them using a background layer and a front layer with
columns. Errors marked by red letters are explained in Sec-
tion 3.5. The top floor shows the correct blue alignment.

only the underlined content is not a transparent placeholder:

yBABA ABBy, yBABABA ABAB By, . . . (6)

Transparency is a fundamental element in determining the
alignment of symbols in the optimization phase (Section 5).
It controls the visibility of façade elements on the pattern-
level by hiding all shapes produced by transparent letters in
all layers where the respective pattern is used.

On the other hand, tools to control the visibility locally
for each layer are necessary for efficient design. In our fra-
mework we provide such functionality by introducing layer
masks, which override the visibility of shapes in the respec-
tive layer. To specify a layer mask, the user marks a subset
of symbols used in the layer to be visible; shapes not gene-
rated by visible symbols become masked and thus hidden.
Since masking controls visibility on the layer-level, a diffe-
rent mask may be applied to the same pattern in each layer.
The alignment of façade elements is only affected by the
transparency of symbols, but not by layer masks.

3.5 Alignment

Our layered design concept follows a simple philosophy: Let
the user specify and manipulate layers independently of each
other, while our framework automatically integrates shapes
from all layers to a single mesh. In Figure 3, a foreground
layer with columns is directly combined with a regular back-
ground. However, such a naïve combination of layers results
in multiple problems:

• Misalignment (extrinsic): Column C is not aligned with
the background layer elements.

• Inconsistent sizing: Column B is wider than column A.

• Inconsistent placement: Distances between neighboring
columns vary, e.g. |AB| 6= |CD|.
• Misalignment (intrinsic): Ground floor and first floor

windows are not aligned (e.g., E with F), despite being
produced by the same pattern.

Therefore, relations between the layers must be taken into
account to achieve a proper alignment before merging them.
Our framework automatically creates an axis-aligned grid
in the xy-plane and distributes the content of layers into its
cells. Elements of a cell are then constrained to snap to its
borders, enforcing an alignment across layers. The compu-
tation of such alignments is described in Section 5.

Alignment Qualifiers. For a feasible layer-based façade
design, it is paramount to consider alignment semantics in
a way that is both robust to conflicting layout specifications
and that can be intuitively manipulated by the user. Otherwi-
se, different failures may occur (cf. Figure 3):

• Occlusion: Column B completely occludes a window,
which is generally not intended.

• Holes: Column A is missing a corresponding background,
which creates an unintended hole.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

M. Ilčík, P. Musialski, T. Auzinger, M. Wimmer / Layer-Based Procedural Design of Façades

A D D A A A
a aP P P b

B B BD D D D
Pa ab P b P

L0

L1
A D D A A A

εε a aP P Pb
B B BD D D D
Pa εb

L0

L1

A D D A A Aε ε ε ε ε ε
a a a aP P P P Pb b b

B B BD D D D
Pε εε

A D D A A Aε ε ε ε ε ε
a a a aP P P P P Pb b b

B B BD D D D

(a)

(c) (d)

(b)

Figure 4: Overview of the alignment qualifiers. Above the façade layouts, the associated words of the two involved patterns
are given: A(DBDA)m for layer L0 and a(dbda)n , d := P for L1. By default, layers may occlude the underlying ones, e.g., P
occludes D (a). After marking D as unoccludable, P aligns with the next best option B (b). Marking P as fully occluding aligns
it in-between elements of L0 (c), and marking B as attached keeps its spatial relationship with the neighboring Ds intact (d).

Common design requirements are to keep certain elements
unoccluded, or to fit them visually between content of an
underlying layer. Figure 4a shows a practical example where
automatic alignment based only on placement and sizing of
symbols interferes with the user’s intentions. To this end, we
provide for each symbol three Boolean alignment qualifiers
to control its behavior (see Figure 4b-d).

• Opaque symbols generate shapes which always cover a
whole alignment grid cell. Therefore, opaque symbols can
be placed in cells lacking content from underlying layers
without a risk of introducing unintended holes in the faça-
de. Non-opaque symbols that, e.g., represent statues, re-
quire a fully opaque content to be placed behind them.

• Attached symbols do not allow the creation of holes
between themselves and their neighboring symbols, e.g.,
doors are usually attached to the door frame around them.

• Unoccludable symbols do not permit overlying symbols
to occlude them. The alignment process has to create sui-
table holes in the overlying layout to permit this. Façade
windows are usually defined this way.

Alignment Groups. Façade designs often contain inten-
tional misalignments (e.g., the first floor of the Hotel in the
supplementary material). We support modeling such layouts
by the introduction of alignment groups. Assigned to the ho-
rizontal and vertical pattern of each layer separately, only
patterns in the same group are aligned. This allows, for ex-
ample, the replacement of whole floors of a façade with a
different layout.

Synchronization. By default, all instances of a sym-
bol/counter/shape share the same attributes. The size of a
symbol is the same in all patterns, and in all alignment
groups, the same holds for the value of a counter. The appea-
rance of shapes and visibility of symbols may be overridden
by patterns or layers.

4 Design Session Example

We demonstrate the layer-based workflow using a very sim-
ple synthetic design idea. A more elaborate example of a
non-trivial building is presented in the supplementary ma-
terial. In a typical session the user builds a stack of layers.
Each new layer requires the following steps:

1. Create new patterns, if necessary

2. Set attributes for new symbols and counters

3. Create a layer, assign patterns, set layer attributes

4. Set global shape attributes or override them locally

Residential House. In this very simple example, we show
a part of a residential house being designed. Please follow
Figure 5 for input details. A single layer would be sufficient
to represent this façade layout. However, fragmentation of
the building structure into patterns as simple as possible is
beneficial for later design changes. The user starts with an
empty canvas and sets the size to 6×3 units.

Basic Layer. The basic layer will contain only repeating
windows and walls in the horizontal direction. Let the sym-
bol A represent a wall and B a window. The user creates a re-
petitive pattern Bx by entering the string A(BA)ˆk. There is no
value given for the counter k. Our framework automatically
chooses the count of BA repetitions which fits the canvas si-
ze the best. The building should have two floors – a ground
floor P with windows and a lowered first floor Q. Thus, the
basic vertical pattern By is given only by PQ. After entering
both patterns, the preferred size for each symbol is set. Note
that Bx does not fit the given canvas size for any integer k.
Our framework is robust enough to handle such imprecise
input automatically.

The first layer Layer0 is created with Bx assigned as the
horizontal and By as the vertical pattern. The solver descri-
bed in Section 5 evaluates the patterns and finds a suitable
façade layout. All shapes are brown cubes by default. The
user changes their properties to match the original design
idea. Windows represented by BQ are only textured.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

M. Ilčík, P. Musialski, T. Auzinger, M. Wimmer / Layer-Based Procedural Design of Façades

Cyan denotes invisible shapes.

Meaning Size
plain wallA 1.0
windowB 1.6

Q 1.0�rst �oor
ground �oorP 2.0

2. SET SYMBOL PROPERTIES

1. ENTER PATTERNS
Repeat walls and windows
as many times as necessary.A(BA)kBX

PQBY
Only a ground �oor and a
�rst �oor.

4. SET SHAPE PROPERTIES CURRENT DESIGN

Material

BQ windowwindow 0.1
AQ 0.1

AP, BP yellow

default brown 0.0

Shapes Depth

Meaning Size
columnC 1.1

—e —
false

—

6. SET SYMBOL PROPERTIES

Opaque
5. ENTER PATTERN

Create a column at each
corner. Everything be-
tween them is automati-
cally matched by the un-
sized symbol e.

cec
c:=C

CX

3. CREATE LAYER0

BX

BY

⊗

A AA BB

Q

P

Material

8. SET SHAPE PROPERTIES

CP grey
Shapes

CURRENT DESIGN7. CREATE LAYER1

CX

BY

⊗
P

Mask

P

Q

C Ce

0. SET CANVAS SIZE

6.0WIDTH 3.0HEIGHT

AP BP AP BP AP

BQ BQAQ AQ AQ

CPCP
The wall behind is still the shape AP

The windows are only textures

No input required for the unsized e.
Override the default opaqueness for C.

Figure 5: This example demonstrates the nine steps of user interaction required to create the first two layers for a residential
house (reference design top left). The first layer contains the basic structure. Columns are added in the second layer. The
modeling process is described in Section 4. For the remaining design steps please refer to supplementary material.

Columns Layer. Columns should be placed at the corners
of the house, the content in the middle can be arbitrary. The
user creates a new pattern Cx as cec with c := C. The unsi-
zed symbol e is a wildcard that represents any content from
other layers. Only the preferred size of C has to be set, as
no input is required for unsized symbols. The second layer
is created with Cx as the horizontal pattern, while By is reu-
sed as vertical pattern. Since the user wants to add columns
only to the ground floor, she sets a layer mask setting only
P to visible. Thus, only CP and Ce stay visible. Moreover, e
is an unsubstituted symbol from the control pattern, i.e., any
shape produced by e will be transparent as well. Ultimately,
only the CP shapes are visible in Layer1. Finally, the user
sets the geometry of CP to be a grey column.

For a more complex example of a design session with a
non-trivial façade, please refer to the supplementary materi-
al. Advantages of our method and a critical comparison with
other approaches are presented in Section 6.

5 Façade Layout Solver

User interaction in our framework is focused on the design of
single layers, while their merging to determine a final façade
layout is solved automatically. In this section, we give details
on this solver. The user input to the solver is summarized in
Figure 2. Mainly, the user defines:

• canvas width and height

• stack of layers, each with a vertical and horizontal pattern

• properties for the symbols used in the patterns, in particu-
lar the preferred size and the opaqueness

Given this input, the goal of the solver is to find a layout that
best respects the user’s input. A layout consists of two items:
first, a so-called candidate, which is formed by instantiating
a single word for each layer from its associated pattern, and
second, an alignment of the layers, which is defined as a
partition of the words on each layer such that the partition
boundaries on each layer are at identical geometric positions
(in other words, the partition boundaries line up). A concrete
layout will usually not exactly respect the preferred symbol
sizes, and thus the solver will try to minimize the overall

deviation of the symbol sizes from the given values, which
constitutes the goal function. In principle, there can be a lar-
ge number of partitions in the layout, however, larger par-
tition numbers can lead to higher deviations from the goal.
On the other hand, at a minimum, each transition between
a transparent and a non-transparent symbol will introduce a
partition boundary. Our solver has three steps:

Candidate generation: In the first step, layout candidates
are generated by instantiating the patterns on each layer
so that the resulting words potentially fit the canvas size.

Alignment: In the second stage, starting with a candidate
from the first step, possible partitions of the candidate are
evaluated to find the best one with respect to the goal func-
tion. This step also takes into account a number of cons-
traints given by alignment qualifiers in order to assure that
only meaningful alignments are produced.

Sizing and placement of shapes: The third step selects the
best layout produced by the first two steps and applies a
continuous solver to obtain the final size and position for
each symbol on each layer.

The solver is applied for the horizontal and vertical direc-
tion independently, then an outer product gives a rectangular
grid of shapes, generating the final façade mesh.

The combinatorial complexity of the first two steps is very
high. Therefore, the solution space is explored in a greedy fa-
shion, featuring specialized heuristics to assess the expected
quality of the potential solution. Furthermore, several indivi-
dual steps make use of an error tolerance µ in order to make
the optimization robust to minor variations of the symbol
sizes. µ is then increased until a solution is found. In the fol-
lowing, each step is described in more detail. Figure 6 shows
a simple example of the pipeline.

5.1 Candidate Generation

The goal of this solver stage is to generate a set of candidates
for the alignment stage. A candidate is a tuple (w1, . . . ,wm),
where wi is one word (instance) from the pattern for layer i,
and i = 1 denotes the uppermost layer.

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

M. Ilčík, P. Musialski, T. Auzinger, M. Wimmer / Layer-Based Procedural Design of Façades

cec
c:=C

A(BA)n

L1

L0

STACK X Y

PQ

PQ P
PATTERN SOLIDPATTERN

BY:

BY:BX:

CX:

A
B

SYMBOLS

C
P
Q

1.0
1.6
1.1
2.0
1.0

SIZENAME
n

COUNTERS

1..105
RANGENAME

CANVAS

6.0 3.0
HEIGHTWIDTH

CeCCX

BX

BEST CANDIDATE
WORDCOUNTER

ABABAn=2

& SIZING

e=3.8
CX

BX

ALIGNMENT
PARTITION

C Ce

BABA A
ERROR .1 .1.4

PLACEMENT & SIZING

e

BA A B A

CC
0.0 1.0 5.0 6.0

0.0 1.0 5.0 6.03.52.5

DEVIATIONS

A
B
C

A 0
-0.1
-0.1

PLACEMENT & SIZING

QP
0.0 2.0 3.0

DEVIATIONS

A
Q
P 0

0PQBY

BEST CANDIDATE
WORD

BY

ALIGNMENT
PARTITION ERROR

QP 0

USER INPUT CANDIDATES ALIGNMENT PLACEMENT & SIZING RESULT

X

Y

PRODUCT - L0

BABA A

LAYERS MERGED

Layer0

PRODUCT - L1

C C
Q
P

AQ
AP

BQ AQ BQ AQ
BP AP BP AP

Q
P

CQ
CP

eQ CQ
eP CP

e

AQ

AP
CP

BQ AQ BQ

Layer0

Layer1
BP AP BP AP

CP

AQ

Figure 6: The solver pipeline is presented in a highly simplified way using the example from Section 4 and Figure 5. Cyan
boxes and red lines denote results of the respective optimization stage.

Enumeration. For a particular pattern, variation is possi-
ble through alternation and through counting operators. We
gather the different instances of a pattern by systematical-
ly enumerating the different value combinations of counters
and alternation choices in lexicographical order. For patterns
shared between layers, this is only done once.

Pruning by Canvas Size. Only words which fit into the
canvas are relevant. This is checked using the preferred sym-
bol sizes and a given tolerance:

li ≤∑
i

wi [k] .size≤ canvasSize+µ, (7)

where wi [k] denotes the kth symbol in word wi. While in-
tuitively, a lower bound of li = canvasSize−µ should apply,
we note here that our system allows lower layers to “make
space” for opaque symbols of upper layers. Thus, the lower
bound of lower layers must account for the potential inserti-
on of empty space by upper layers. Concretely,

li = canvasSize−
i−1

∑
j=1

∑
k

(
w j [k] .size∗w j [k] .opaque

)
.

Further examples are given in the supplementary.

Sizing Unsized Symbols. To evaluate Eq. (7), the size of
all symbols needs to be known. If an enumerated word con-
tains unsized symbols, we create several differently sized
words by uniformly sampling the sizes of unsized symbols
so that the resulting word size respects Eq. (7). Figure 7 gives
an example of such counting and sizing operations.

Candidate Generation. Having obtained words that re-
spect Eq. (7) for each layer, we generate candidates by com-
bining these words into tuples and then pass them to the
next stage of the solver. In practice, we do this candidate
by candidate, and only pass further candidates if a solution
is not found. In the supplementary material we describe how
pattern analysis can significantly reduce the complexity of
counting and sizing.

5.2 Alignment
In this solver stage, potential alignments of a given candida-
te (wi)

m
i=1 are formed by partitioning the words of the can-

B = 3

 ebse s
e

1 2 3
4 2 1

eBe
3

eBe eBBe eBBBe
11 9 10 11

PA
TT

ER
N

 1

b:=B
w1

w1

A = 2
AsCtAs

PA
TT

ER
N

 2
C = 1.3

CANDIDATES FOR ALIGNMENT

A2CA2
(s,t) (1,5) (2,2)

AC5A
(1,4)
AC4A AAC2A2

10.5 9.2 10.6 9.3
w2

w2

(2,1)

e
eBBe

A2CA2

(s,t) (1,5) (1,4)

AC5A

(1,5)

AC4A A2C2A2

w1

w2

(1,4) (2,2) (2,1)

eBe eBe

AC5A

eBe eBe

AC4A

4 43 3 2 2
eBBe

Figure 7: Counting and sizing options for two patterns and
the resulting candidates. A canvas size of 10 and error tole-
rance µ = 1 implies the word size limit 9≤ |w| ≤ 11.

didate into an equal number of substrings. We denote this
as an m× n matrix A, where for each row i the elements
ai, j represent the substrings of word wi, i.e., wi = ai,1 . . .ai,n.
The following shows possible alignments of the candidate
(CeC,ABABA):

)(Ce
ABA

e
ABABA)(e

BAB
C
A

C
A)(C

BA
C
ԑ

C
ԑ

(8)

Note that in our framework, a substring can also be empty,
denoted as ε. This represents the case that a lower layer “ma-
kes space” for a symbol in an upper layer.

Alignment Error. An alignment means that geometrical-
ly, all elements in a column need to be the same size so that
the partition boundaries are aligned. To achieve this, sym-
bols need to be resized. This leads to deviations from the
specified sizes, given by the column error ω j and the ali-
gnment error Ω = ∑ω j for the whole matrix. The column
error basically measures the maximum disagreement of sub-
strings in a column:

ω j =

∣∣∣∣∣max
i

∑
l

(
ai, j [l] .size

)
−min

i ∑
l

(
ai, j [l] .size

)∣∣∣∣∣ (9)

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

M. Ilčík, P. Musialski, T. Auzinger, M. Wimmer / Layer-Based Procedural Design of Façades

Combinatorial Optimization. Finding the optimal ali-
gnment for a given candidate is a combinatorial optimization
problem. We observe that an alignment can be generated ite-
ratively by a state machine: in each step, the state machine
consumes a substring for each word to form a column and
leaves the remaining string for the next iteration. The right-
most alignment in Eq. (8) can be obtained in 3 steps:

CeC
ABABA)(C

A
eC

BABA
eC

BABA)(e
BAB

C
A

C
A)(C

A
ε
ε

The possible decisions the state machine can make at each
step can be represented by a weighted graph, and we will
show that finding the best alignment for a candidate is equi-
valent to finding the shortest path through it.

To construct this graph, we start with a simpler state
machine, an m-head one-way finite state machine [Ros66],
which recognizes exactly the given tuple of words, and con-
sumes only one symbol at a time (a proper definition is given
in the supplementary material). The set of states is made up
of all suffix combinations of the input tuple:

Q =
{
(Qi)

m
i=1 | Qi is suffix of wi

}
,

and each state has m outgoing edges, each representing the
consumption of one symbol of one word wi. The correspon-
ding transition graph is an m-dimensional square lattice with
a single source and sink node. Figure 8 shows the transition
graph of the previous example with edges in orange.

The state machine we are looking for needs to be able to
consume multiple symbols in each word. This can be achie-
ved by building the transitive closure of the transition graph,
which we call alignment decision network (ADN). Each ed-
ge in the ADN represents a decision on which symbols to
consume in each word, and thus corresponds to a column,
and each path from the initial state to the final state gives one
alignment matrix. Consequently, the set of all alignments for
a candidate (wi)

m
i=1 is given by all traversals of its correspon-

ding ADN. Figure 8 shows the edges added by the transitive
closure in blue, and one particular traversal in red.

C
A

e
ABA

C
A

Reading ABABA
Reading CeC

Figure 8: Alignment decision network for (CeC,ABABA).
The optimal path is marked red, transitions of the automaton
are orange, blue arcs were added by the transitive closure.

Cost Function and Algorithm. In order to rank the pos-
sible traversals, the edges of the ADN are weighted by the
column error ω j. Thus, the edge weights in a path accumu-
late to Ω, the alignment error, and the best alignment corre-
sponds to the shortest path in the ADN.

Unfortunately, the number of outgoing edges per node is
exponential in the number of symbols per word (O(nm) for
n symbols per word and m words). Therefore, breadth-first
algorithms like A* [HNR68] are infeasible. Instead, we em-
ploy the informed version of iterative deepening with a trans-
portation table for visited nodes [RM94]. This algorithm
operates in depth-first instead of breadth-first order, thus a
global ranking by edge weights is not required. Instead, each
node builds a local priority queue of outgoing edge weights
when visited. However, even the evaluation of the weights
of all outgoing edges is too costly. Instead, we observe that
the ADN describes a partial order, which allows us to app-
ly a dynamic-programming approach, reducing the time to
compute edge weights to O(n log(m)) for a node.

To break ties when two outgoing edges have the same
weight ω j , we prefer the edge with the lower total number
of symbols in the respective column to favor higher partition
numbers.

Constraints. Apart from the column errors, the solver also
evaluates a number of constraints that may disallow edges.
The following holds for each alignment column j:
• A fully opaque element must exist in each column
∃i
(
∀k ai, j[k] is opaque

)
• Transparent symbols must be separated from others
∀i
(
∃k ai, j[k] is transparent

)
⇒
(
∀k ai, j[k] is transparent

)
• Only opaque symbols may cover unoccludable symbols
∃i,k ai, j[k] is unoccludable⇒
∀h > i :

(
ah, j = ε

)
∨
(
∀k ah, j[k] is transparent or opaque

)
and for each pair of subsequent columns j and j+1
• No “insertions” (empty string) for attached neighbors(
∃i ai, j[last] is attached

)
⇒ ai, j+1 6= ε(

∃i ai, j+1[f irst] is attached
)
⇒ ai, j 6= ε

In particular, the second constraint implies that transiti-
ons between transparent symbols and non-transparent ones
should always form an alignment boundary. This is motiva-
ted by the fact that these boundaries typically constitute the
design intent of the user when using layers. The distribution
of transparent symbols determines a minimal set of columns
for a candidate.

Transparent Splits. In practice, we encountered many
situations where an alignment as defined above is not
possible. Let us add a third word to the previous example:
(f A f ,CeC,ABABA). Note that transparent symbols are those
which are not underlined. The best options for alignment are:

f A f
C
A BAB

C
A

e)(f A f
C
A B

C
A

e)(BA
ɛ ɛ

ɛɛ

3 6 3 0 2 6 2 0
5 8 5 2 5 8 5 218 20

15 10
Size

Error

Σ Σ
2 12 2 16

C
A

C
A

e)(BAB

ɛɛ

Σ

fAf

0 4 0 4

)(c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

M. Ilčík, P. Musialski, T. Auzinger, M. Wimmer / Layer-Based Procedural Design of Façades

None of them results in a proper alignment. The first
accumulates an error larger than the façade size, the second
alignment spans too much in size, and the third one is
invalid due to transparent and solid symbols mixed in a
single alignment matrix entry. In the final layout, symbols
from the control pattern are invisible, thus we can split
them into smaller parts where necessary. This operation
can be done during the alignment or as a preprocessing
step. The optimal alignment contains the split symbols
with size(f1) = size(e2) = 2, size(f2) = size(e1) = 3.

A f2

C
A B

C
A

e2)(BA
e1 e1

f1

0 0 0 0 0
2 3 2 3 2 12

0
Size

Error

Σ

f2 f1

Heuristics and Optimizations. Façades often contain re-
flective symmetries. This motivated us to switch to a bidi-
rectional variant of the shortest-path search algorithm. Ano-
ther important observation is that several substituted patterns
often use the same control patterns, and the control words
are usually considerably shorter than the full words after the
substitution. Hence, prealignment of the control patterns is
mostly cheap since the words are fewer and shorter. The in-
formation can be then used to reduce the complexity for ali-
gnment of substituted words to almost constant time. The
cost function is evaluated only for the edges inside of the
corresponding prealigned column.

5.3 Sizing and Placement of Shapes

The alignment A obtained in the previous step is a discrete
approximation of the final façade layout. Before combining
the solutions for the X and Y directions, the façade elements,
represented by symbols arranged in A, have to be distributed
in the continuous 1D geometric domain of the façade in the
respective direction. Therefore, we need to distinguish bet-
ween each occurrence of a symbol and assign it a dedicated
placement information. We define a letter to be an instance
of a symbol with additional attributes s and t, the lower and
upper bound of the interval assigned to the letter in the geo-
metric domain. Letters inherit all symbol properties as given
in Figure 2. The goal of this optimization stage is to find the
values of s and t for all letters in Ai, j. The deviation of the
letter size (t− s) from the preferred symbol size should be
kept minimal.

We solve the problem using a constrained system of linear
equations. In particular we are looking for a solution vector
which approximates a solution of an overdetermined linear
system. This problem is known as least-squares with line-
ar equality and inequality constraints. In fact it is the linear
version of a convex quadratic programming problem, and we
solve it using the active-set algorithm [Bjö88]:

min
x
‖Ax−b‖2 subject to Bx = d and Cx 5 e,

where x denotes the vector of interleaved s and t values for
all letters.

Continuous Objective Function. The quality of the so-
lution is measured by the quadratic error produced by the
symbols when they deviate from the user-given preferred si-
ze. Each symbol should be counted only once, thus, in a pre-
processing step we store an arbitrarily selected “prototype”
letter for each symbol in a new property p. The resulting
objective function is:

min ∑
i, j,k

((
ai, j [k] .t−ai, j [k] .s

)
−ai, j [k] .size

)2

for
(
ai, j [k] 6= ε

)
∧
(
ai, j [k] .p = ai, j [k]

)
Epsilons are excluded from the objective function as they fit
to any required size.

Basic Constraints. The distribution of letters must follow
some basic principles:

• Let s be the lower and t the upper bound:
ai, j [k] .s < ai, j [k] .t

• Stitch the letters of ai, j in correct order:
∀k > 0 ai, j [k−1] .t = ai, j [k] .s

• Stitch the letters at column borders in correct order:
∀ j > 0 ai, j−1 [last] .t = ai, j [0]

• Always fill the whole façade:
ai,0 [0] = 0∧ai last [last] = canvasSize

Alignment Constraints. So far, no synchronization exists
to enforce equal sizing of all instances of a symbol. Using
the reference to a prototype p, it is added by:

• ∀ai, j [k] 6= ε : ai, j [k] .t − ai, j [k] .s = ai, j [k] .p.t −
ai, j [k] .p.s

The alignment imposes a further constraint for each column
of the alignment matrix which aligns its first and last letters
in all rows to the same position:

• ∀i > 0
(
ai, j [0] .s = a0, j [0] .s∧ai, j [last] .t = a0, j [last] .t

)
This constraint indicates that all rows of any column j have
to be sized equally.

Cross Group Constraints. So far we have discussed the
optimization of patterns from a single alignment group. If
the user assigns a pattern to several alignment groups, the
alignment is performed separately for each group, leading to
a set of alignment matrices. Letters from all alignment matri-
ces are inserted into the linear system independently, but ad-
ditional constraints are then introduced to make the sizing of
symbol instances identical across alignment groups.

6 Results and Discussion

Our framework provides a means for efficiently modeling a
large variety of façades. In Figure 10 we present selected lay-
outs designed in our framework, which are inspired by real
buildings of different architectural styles and periods. Re-
sults of retargeting and structure modifications are presented
in the second row of the Figure. The computation time for
our method was measured on a desktop PC with an AMD
A8-3850 2.9 GHz processor and 8 GB RAM.

The most complex model with 26 layers is the Tonhalle in

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

M. Ilčík, P. Musialski, T. Auzinger, M. Wimmer / Layer-Based Procedural Design of Façades

VERTICAL DELIMITERS
SPLIT-BASED LAYER-BASED

+ 2 ✎ 4
+ 5

✎ 2
+ 2

RULES

SYMBOLS

LARGE BALCONY+

SPLIT-BASED LAYER-BASED

+ 3 ✎ 1

+ 3

+ 2
+ 1
+ 2
+ 2

RULES

LAYERS

SYMBOLS

COUNTERS

BASIS
SPLIT-BASED LAYER-BASED

4

11

2
1
8
2

RULES

LAYERS

SYMBOLS

COUNTERSG
X

X
T

S*

C(DC)*

W(BW)*

E(FE)*

σ SPLIT-BASED

V*

X
T C(RDC)*

W(RBW)*

E(QFE)*

U P(QPP)*

Z(RZZ)*

G
X

WRL(RBW)*

SPLIT-BASED

Z
SS

V*

X
T

Z

σ

U

G
X

WQlh, l:=L

LAYER-BASEDW(QBW)n

L1

L0

G
X(

zS
)p zb v,

 z
:=

Z

G
XS

m
YT

U

L 1

1 ≤ m,n,p
0 ≤ b ≤ 1

L 0

LAYER-BASEDW(BW)nL0

G
XS

m
YT

1 ≤ m,n

L 0

Each arrow represents a split. Repeats
are integrated into splits using the * notation.

New rules are denoted by + edited rules by ✎.

+This is a variation not present in the reference.

REFERENCE

Figure 9: For a comparison of our layer-based method with the split-based CGA-Shape grammar, we construct a rough partition
of the reference building (top-left). Colors of the blocks indicate content types: windows – blue, balconies – brown, terraces –
red and shops – green. Adding vertical separators and large balconies with our layer-based approach requires less than a half of
the split operations. Figure 10 shows some variations of the final façade.

Zürich. It requires only a second to compute. The apartment
house, a much simpler building, takes almost 5 seconds to
compute. The reason is that in the former case, the designer
took care of precise symbol sizing for all elements and limi-
ted the usage of counters, whereas in the latter case, incon-
sistent symbol sizing increases the frequency of constraint
violations, i.e., the shortest-path search in the ADN is mo-
re complex. The modern-looking layout of the teaser-image
building is actually a branch of the bookstore building (built
1837 in Vienna). In the comparison in the following section,
we present a contemporary terraced house.

6.1 Comparison to Split-Based Methods

For a comparison of our method with a layer-less ap-
proach, characteristic modeling operations were performed
both with our framework and with a grammar based on split
rules (see Figure 9). The modeling process for obtaining the
prototype as well as the complexity of further changes are
described and evaluated. Creation and management of rules
is the most demanding task for grammar-based systems, the-
refore we consider the number of rules and their edits as the
relevant comparison parameter.

Our Method. A single layer is sufficient to create a ba-
sic layout of the reference façade in Figure 9. It is specified
using the vertical pattern GXSmY T and the horizontal pat-
tern W (BW)n. W stands for a window block, B for a balcony
block. G represents the ground floor, S the other floors and
T the terrace. X and Y represent thin ledges.

The first layout modification inserts vertical delimiters.
There are two ways of adding them to the design: either by
changing the horizontal pattern to W (QBW)m or by adding a

new layer. Ignoring the following tasks, modification of the
existing layer seems more convenient. It is accomplished by
inserting a new symbol into the pattern.

The second layout modification adds a large balcony to
each odd floor using a new layer L1. Selection of the odd-
numbered floors is done by a substituted pattern GY (zS)p zbv
with z := Z. Floors to be altered are represented by a
new symbol Z with the same size as S. The subpattern (zS)p z
would imply an odd number of floors, thus we add zb with
b ∈ {0,1}. The unsized symbol v automatically covers ter-
races on the last floor. In the horizontal direction, we add
a new symbol L matching the size of BW . The substituted
pattern WQlh with l := L aligns the first BW from the left
with the large balcony L, and the symbol h aligns with the
rest.

Split-Based Method. The derivation process in Figure 9
left utilizes a compound subdivision rule which is not a stan-
dard part of split-based approaches. It performs a split with
optional repetitions (using the Kleene star) at once. Although
this reduces the number of rules up to 50%, our method still
remains considerably more expressive.

For the basic layout, we subdivide an axiom shape σ verti-
cally into rows representing floors. The pattern is nearly the
same as for the layered approach. Each symbol (G, S and T)
represents a dissimilar part of the façade, therefore we have
to write three separate rules with the same structure but using
different output symbols. Our method does not require such
redundant rules, since it utilizes factorization of dimensions
and deals with the semantics also at the shape level.

Façade modifications are significantly more involved wi-

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

M. Ilčík, P. Musialski, T. Auzinger, M. Wimmer / Layer-Based Procedural Design of Façades

thout using layers and factorization. Adding the vertical de-
limiter requires changing rules for all floors. The number of
edit operations is twice as high as for our method. The only
option for improvement would be to start over with a hori-
zontal split applied to σ, creating the same issue in the next
step when adding the balconies. The ambiguity of split or-
dering in linearly independent directions is often a problem
for split-based approaches.

Lipp et al. [LWW08] proposed semantic selections within
a visual editing system, which performs simple rule chan-
ges automatically. However, insertion of the balconies is a
good example where their method fails to update the gram-
mar to include the new pattern (cf. Figure 9, bottom). The
problem with even or odd number of floors needs to be
resolved by a pair of non-deterministic vertical split rules
σ→ GXV∗ZXTU and σ→ GXV∗XTU . The new symbol
V then develops into ZS with a new horizontal split rule for
Z. Similar to previous tasks, our approach again required on-
ly half the rules.

6.2 Comparison to Structure-Aware Methods.

Our method also has the ability to create further variations
of the façade (see Figure 10), similar to Bao et al. [BSW13],
Dang et al. [DCNP14] or Zhang et al. [ZXJ∗13]. They all
supply only high-level user interaction modalities. Our sy-
stem is not limited to the data of an input image. It allows de-
signing façades from scratch. Not only automatic retargeting
of existing designs, but also insertion of new elements, pat-
terns and layers are supported. Switching the layers on/off
supports a non-linear workflow and allows exploring various
configurations.

The main difference from our concept can be seen in the
structure representation. In the case of Bao et al., an initial
hierarchical segmentation with split lines has to be perfor-
med, on which various constraints, such as frequency, sym-
metry, size and others can be defined. Such constraints can
only be set between regions, which in turn are defined by
the segmentation. This forces the user to perform the initial
segmentation such that the desired variations can be achie-
ved. This makes it hard to design intentional misalignment
in both directions, which can be simply added with an addi-
tional layer in our case.

The work of Dang et al. [DCNP14] uses a hierarchy of
generalized grids to describe the interrelations of façade ele-
ments. The user then specifies a set of grids at possibly dif-
ferent levels of the hierarchy, which are then removed or du-
plicated during façade resizing. By choosing different sets
of grids at subsequent editing sessions, a large number of
variations can be generated. However, it can be difficult to
anticipate the final result of such iterative modeling.

Our framework keeps the layers in a flat stack, avoiding
complex hierarchies and structural dependencies. Users can
focus on editing single layers, while our system aligns and
merges the layers. Independent editing of horizontal and ver-
tical patterns is simpler compared to split-based approaches

like [DCNP14]. However, Bao et al. or Dang et al. provi-
de simpler user interactions when compared to our frame-
work, as patterns do not have to be explicitly specified. On
the other hand, the expressive power of our concept is higher,
providing means for semi-occluded and overlapping structu-
res, complex repetitive and reflective symmetries, and large
elements spanning the whole façade.

6.3 Limitations

While our framework works in most cases we encountered,
we also observed that severely underconstrained user input
can lead to impractical runtimes of our solver. This is especi-
ally the case when the user specifies layouts where symbols
with significantly different preferred sizes are meant to be
aligned. Thus, the solver has to allow for a large error mar-
gin, which only happens after a large number of alignments
with smaller error margin are discarded. If many unboun-
ded parametric counters are used in the layout definition, the
search space for possible alignments can also become too
large to be traversed at interactive speed. We believe that
further research on pattern analysis as described in a simple
form in Section 5 could eliminate these issues.

7 Conclusion

We proposed a layered approach for façade modeling, inspi-
red by the layer stack used in common image editing. Our
main contribution is the concept of pattern-based modeling
combined with a layered organization of related (but not ne-
cessarily adjacent) regions. On each layer, simple patterns
control the arrangement of façade elements and masks, and
our optimization routine automatically combines the active
layers into meaningful layouts. By specifying repetitions, re-
flections and alternations, the layout is able to adapt to dif-
ferent façade sizes while still respecting the preferred sizes
of the façade elements. Our method reduces the complexi-
ty of rule-based methods and also facilitates direct control.
The measurements show that our concept is at least twice as
efficient as split-based methods.

We hope that our research results can also help to impro-
ve automatic façade reconstruction. While primarily focused
on façades, we believe that our approach can be successfully
transferred into other application domains that utilize a grid-
based layout of elements like web design. When extending
to the curved domain, jewelry design is also a promising ap-
plication field.

Acknowledgements. Our research was financed by the
Austrian Science Fund (FWF) projects Nr. FWF P24600-
N23, FWF P23700-N23 and FWF P23237-N23.

References
[Ang80] ANGLUIN D.: Finding Patterns Common to a Set of

Strings. J. Comput. Syst. Sci. 21, 1 (1980), 46–62. 3

[ARB07] ALIAGA D. G., ROSEN P. A., BEKINS D. R.: Sty-
le grammars for interactive visualization of architecture. IEEE
Trans. Vis. Comp. Gr. 13, 4 (2007), 786–97. 2

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

M. Ilčík, P. Musialski, T. Auzinger, M. Wimmer / Layer-Based Procedural Design of Façades

TERRACED HOUSE TEASER BUILDING BOOKSHOP APARTMENT HOUSE TONHALLE
ZÜRICH13

8
29
3

0.8s

13
8

29
3

1.3s

23
28
70
5

1.0s

21
26
68
5

1.1s

6
4

12
4

4.5s

9
6

15
8

2.1s

18
12
29
8

3.7s

12
10
32
4

1.7s

7
5

24
6

3.9s

7
5

24
6

2.4s

RULES
LAYERS

SYMBOLS
COUNTERS

TIME

RULES
LAYERS

SYMBOLS
COUNTERS

TIME

Figure 10: Various façades that were modeled with our layer-based framework. Apart from simple adaption to size changes of
the façade (Teaser Building, Kongresshaus), we also support changes of the façade element sizes (Apartment house) or complex
editing operations to alter significant parts of the façade (Terraced House, Bookshop).

[Bjö88] BJÖRCK Å.: A Direct Method for Sparse Least Squares
Problems with Lower and Upper Bounds. Numerische Mathema-
tik 54, 1 (1988), 19–32. 9

[BSW13] BAO F., SCHWARZ M., WONKA P.: Procedural Facade
Variations from a Single Layout. ACM Trans. Gr. 32, 1 (Jan.
2013), 1–13. 2, 11

[DCNP14] DANG M., CEYLAN D., NEUBERT B., PAULY M.:
SAFE: Structure-aware Facade Editing. Comp. Gr. F. 33, 2 (May
2014), 83–93. 2, 11

[Fin08] FINKENZELLER D.: Detailed Building Facades. IEEE
Comp. Gr. App. 28, 3 (May 2008), 58–66. 2

[FMLW14] FAN L., MUSIALSKI P., LIU L., WONKA P.: Struc-
ture completion for facade layouts. ACM Trans. Gr. 33, 6 (Nov.
2014), 210:1– 210:11. 2

[Gel10] GELADE W.: Succinctness of Regular Expressions with
Interleaving, Intersection and Counting. Theoretical Comp. Sci.
411, 31-33 (2010), 2987–2998. 3

[HHKF10] HOHMANN B., HAVEMANN S., KRISPEL U., FELL-
NER D.: A GML Shape Grammar for Semantically Enriched 3D
Building Models. Comp. & Gr. 34, 4 (2010), 322–334. 2

[HMU07] HOPCROFT J. E., MOTWANI R., ULLMAN J. D.: In-
troduction to Automata Theory, Languages and Computation.
Pearson Addison-Wesley, Upper Saddle River, NJ, 2007. 3

[HNR68] HART P., NILSSON N., RAPHAEL B.: A Formal Basis
for the Heuristic Determination of Minimum Cost Paths. IEEE
Trans. Sys. Sci. Cyb. 4, 2 (July 1968), 100–107. 8

[Jaf78] JAFFE J.: A Necessary and Sufficient Pumping Lemma
for Regular Languages. SIGACT N. 10, 2 (July 1978), 48–49. 3

[KBK13] KRECKLAU L., BORN J., KOBBELT L.: View-
Dependent Realtime Rendering of Procedural Facades with High
Geometric Detail. Comp. Gr. F. 32, 2 (May 2013), 479–488. 2

[KPK10] KRECKLAU L., PAVIC D., KOBBELT L.: Generalized
Use of Non-Terminal Symbols for Procedural Modeling. Comp.
Gr. F. 29, 2 (May 2010), 1–12. 2

[LCOZ∗11] LIN J., COHEN-OR D., ZHANG H., LIANG C.,
SHARF A., DEUSSEN O., CHEN B.: Structure-preserving Re-
targeting of Irregular 3D Architecture. ACM Trans. Gr. 30, 6
(Dec. 2011), 1–8. 2

[LWW08] LIPP M., WONKA P., WIMMER M.: Interactive Visual
Editing of Grammars for Procedural Architecture. ACM Trans.
Gr. 27, 3 (Aug. 2008), 1. 2, 11

[MS72] MEYER A. R., STOCKMEYER L. J.: The Equivalence
Problem for Regular Expressions with Squaring Requires Expo-
nential Space. IEEE Symp. F. Comp. Sci. (1972), 125–129. 3

[MWA∗13] MUSIALSKI P., WONKA P., ALIAGA D. G., WIM-
MER M., VAN GOOL L., PURGATHOFER W.: A Survey of Urban
Reconstruction. Comp. Gr. F. 32, 6 (Sept. 2013), 146–177. 2

[MWH∗06] MÜLLER P., WONKA P., HAEGLER S., ULMER A.,
VAN GOOL L.: Procedural Modeling of Buildings. ACM Trans.
Gr. 25, 3 (July 2006), 614. 2

[MWW12] MUSIALSKI P., WIMMER M., WONKA P.: Interacti-
ve Coherence-Based Façade Modeling. Comp. Gr. F. 31, 2 (May
2012), 661–670. 2

[PM01] PARISH Y. I. H., MÜLLER P.: Procedural Modeling of
Cities. In Proc. of ACM SIGGRAPH ’01 (New York, New York,
USA, 2001), ACM Press, pp. 301–308. 2

[RM94] REINEFELD A., MARSLAND T. A.: Enhanced Iterative-
Deepening Search. IEEE Trans. Pattern Anal. Mach. Intell. 16, 7
(July 1994), 701–710. 8

[Ros66] ROSENBERG A. L.: On Multi-head Finite Automata.
IBM J. Res. Dev. 10, 5 (Sept. 1966), 388–394. 8

[SHFH11] SHEN C.-H., HUANG S.-S., FU H., HU S.-M.: Ad-
aptive Partitioning of Urban Fcades. ACM Trans. Gr. 30, 6 (Dec.
2011), 184–191. 2

[Sti75] STINY G.: Pictorial and Formal Aspects of Shape and
Shape Grammars and Aesthetic Systems. Phd thesis, University
of California, Los Angeles, 1975. 2

[VAW∗10] VANEGAS C. A., ALIAGA D. G., WONKA P., MÜL-
LER P., WADDELL P. A., WATSON B.: Modelling the Appea-
rance and Behaviour of Urban Spaces. Comp. Gr. F. 29, 1 (Mar.
2010), 25–42. 2

[WFP10] WU C., FRAHM J.-M., POLLEFEYS M.: Detecting
Large Repetitive Structures with Salient Boundaries. In Comp.
Vision - ECCV 2010 (Crete, Greece, 2010), vol. 6312, Springer
Berlin / Heidelberg, pp. 142–155–155. 2

[WWSR03] WONKA P., WIMMER M., SILLION F., RIBARSKY
W.: Instant Architecture. ACM Trans. Gr . 22, 3 (2003), 669. 2

[XFT∗08] XIAO J., FANG T., TAN P., ZHAO P., OFEK E., QUAN
L.: Image-based Façade Modeling. ACM Trans. Gr. 27, 5 (Dec.
2008), 161:1–161:10. 2

[ZXJ∗13] ZHANG H., XU K., JIANG W., LIN J., COHEN-OR
D., CHEN B.: Layered Analysis of Irregular Facades via Sym-
metry Maximization. ACM Trans. Gr. 32, 4 (2013). 2, 11

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.

